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Abstract

The thesis presents the design and im-
plementation of a navigation system for
an autonomous formula participating in
the Formula Student competition. In par-
ticular, the thesis proposes a real-time
implementation of the Simultaneous lo-
calization and mapping problem (SLAM).
In this problem, a mobile robot is placed
in an unknown environment. The robot
moves through the environment and uses
the information from its sensors to con-
struct a virtual map and simultaneously
localize itself within the map. The thesis
discusses the relevance of SLAM to the
Formula Student competition. Following,
a thorough theoretical overview of SLAM
from the probabilistic viewpoint is pro-
vided. Then, a parallel real-time imple-
mentation of FastSLAM 1.0 using GPUs is
proposed. We provide a detailed descrip-
tion of our implementation encompassing
the whole architecture, the technologies,
and data structures used. The proposed
implementation is evaluated on a series of
simulated and real-world datasets assess-
ing the accuracy and performance. Com-
pared to the implementation provided
by Python Robotics, our implementation
achieves higher accuracy while being or-
ders of magnitude faster. Based on the
experimental results, we conclude that our
implementation is suitable for a real-time
navigation system for an autonomous for-
mula.

Keywords: Formula Student,
Navigation System, SLAM, GPU,
Real-time

Supervisor: Ing. Jan Čech, PhD
Karlovo náměstí 13,
Praha 2

Abstrakt

Tato práce představuje návrh a imple-
mentaci navigačního systému pro stu-
dentskou autonomní formuli účastnící se
soutěže Formula Student. Konkrétně tato
práce navrhuje real-time implementaci
problému Simultánní lokalizace a ma-
pování (SLAM). V tomto problému je
mobilní robot umístěn do neznámého
prostředí. Robot se v tomto prostředí po-
hybuje a za použítí senzorů vytváří vir-
tuální mapu a zároveň se v této mapě
lokalizuje. Tato práce rozebírá relevant-
nost SLAMu pro soutěž Formula Student.
Následně je uveden teoretický přehled
SLAMu z pravděpodobnostního hlediska.
Poté je navržena paralelní real-time imple-
mentace algoritmu FastSLAM 1.0 využíva-
jící GPU. Zároveň je poskytnut podrobný
popis naší implementace zahrnující celou
architekturu, použité technologie a datové
struktury. Navrhovaná implementace je
vyhodnocena na sérii simulovaných a reál-
ných datasetů, kde se měří její přesnost a
rychlost. V porovnání s implementací od
Python Robotics naše implementace do-
sahuje vyšší přesnosti a je několikařádově
rychlejší. Na základě těchto experimentál-
ních výsledků vyvozujeme, že naše imple-
mentace je vhodná pro real-time navigační
systém autonomní formule.

Klíčová slova: Formula Student,
Navigační systém, SLAM, GPU,
Real-time

Překlad názvu: Navigační systém pro
autonomní studentskou formuli
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Chapter 1

Introduction

The thesis presents the design and implementation of a navigation system
for an autonomous student formula participating in the Formula Student
competition. Formula Student is one of the biggest and most prestigious
engineering competitions in the world. Every year, university teams from
all over the world try to build the best racing formula possible. Hundreds
of teams compete in many racing events held during the year, mimicking
the famous Formula 1 competition. The competition consists of three classes
– Combustion vehicles (CV), Electric Vehicles (EV), and the newest class
added in 2017 – Driverless vehicles (DV). In the Driverless class, the task
is not only to design a racing formula that can be driven by a human pilot,
but in addition, the car is also required to be capable of a fully autonomous
operation. This means that the car has to carry extra sensors and hardware
that allows it to safely operate without human intervention. For this reason,
the Driverless class is the most challenging of the three classes, combining
not only various fields of mechanical and electrical engineering but also many
fields of computer science and robotics such as computer vision, machine
learning, autonomous driving and many more.

The thesis aims specifically to provide a navigation system based on simul-
taneous localization and mapping for an autonomous formula. Simultaneous
localization and mapping (SLAM) is a fundamental problem in robotics [13].
In this problem, a moving robot is placed in an unknown environment and
its goal is to simultaneously build a map (mapping) of the environment and
keep track of its own position with respect to the map (localization). The
challenge is made difficult by assuming that both the robot control and the
sensors perceiving the environment contain a certain level of noise. This
leads to a seemingly impossible chicken-and-egg-like problem in which the
robot has to map the environment using noisy information about its pose
and at the same time localize itself by taking noisy measurements of the
environment. The SLAM problem is relevant in many areas such search and

3
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Figure 1.1: The autonomous formula for the 2021 season

rescue, underground and underwater exploration, self-driving cars, and many
more. Despite the seeming difficulty of SLAM, several SLAM algorithms have
been successfully used in many real-world applications using a wide array of
distinct approaches to solving the problem.

The driverless formula is being developed by the team eForce Driverless
which is part of the parent team eForce FEE Prague Formula operating at
CTU Prague. eForce has been founded more than a decade ago and has
become very successful in the electric class of Formula Studenet, placing in
top 3 in many races and even winning several. eForce Driverless hopes to
replicate its success in the Driverless class. Fig. 1.1 shows our autonomous
car for the 2021 season. The formula is equipped with several sensors. On
the front wing, two Intel Realsense cameras are placed on opposite sides. In
addition, an Ouster OS1 LiDAR is placed in the middle of the front wing. A
Stereolabs ZED camera is also placed at the top of the main hoop.

The main contribution of the thesis is the design and implementation of
a simultaneous localization and mapping system for real-time autonomous
navigation. The implementation is aimed mainly for use in the Formula
Student competition, but is written to be general purpose so that it can
be used in a variety of different systems. To achieve real-time capability,
the algorithm is implemented using GPUs, which allows for a high update
frequency. The proposed implementation is evaluated on several simulated and
real-world datasets to assess its accuracy and performance. The experimental
results confirm the suitability of our implementation for accurate real-time
SLAM.
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................................... 1.1. Thesis structure

1.1 Thesis structure

The rest of the thesis is organized into the following chapters:

. Formula Student competition - This chapter describes the Formula
Student competition and the history of eForce Driverless form its con-
ception up to the current season (2021)..Recursive Bayesian filter - In this chapter, we describe the recursive
Bayesian filter and how it can model the problems concerning stochastic
state estimation. As we show, most of the theory of SLAM is built on
top of the Bayesian filter..Kalman filter - This chapter discusses the Kalman filter, a popular
state estimation technique widely used in robotics, which is also a special
case of the Bayesian filter..Particle filter - This chapter introduces particle filters and their use
for state estimation. Particle filters, together with Kalman filters, form
the basic structure of several SLAM algorithms.. Simultaneous localization and mapping - In this chapter, the
problem of SLAM is described in detail. We explain how the problem
is formalized using a probabilistic framework and show three different
solution approaches - EKF-SLAM [15], FastSLAM [64] and Graph SLAM
[57]. The chapter also gives a brief overview of the different SLAM
variants and discusses current approaches to the problem.. FastSLAM GPU implementation - This chapter proposes an efficient
implementation of the FastSLAM algorithm implemented on a GPU for
real-time SLAM applications such as the Formula Student competition.. Experimental results - In this chapter, the accuracy and performance
of the proposed implementation is evaluated on a variety of simulated
and real SLAM datasets..Conclusion - This chapter summarizes the results and the contribu-
tions made in the thesis. We also discuss future work and possible
improvements to the implementation.

The first chapter describes the Formula Student competition and a brief
history of eForce Driverless. The next three chapters are meant to be in-
troductory and explain the theory behind recursive state estimation and
various specializations such as Kalman and particle filters. For experienced
readers, these chapters can be skipped and one can instead start with the
chapter introducing SLAM. Throughout the thesis, we also ocassionaly refer
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1. Introduction .....................................
the reader to the appendix for more detailed information on various topics
which are not included in the main text to keep it focused. Similarly, the
appendix serves merely as a supplement to the main text. However, for the
interested reader, the appendix contains various proofs of theorems mentioned
in the thesis and extra material related to particle filters and SLAM.
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Chapter 2

Formula Student competition

The Formula Student competition organizes many annual racing events. Some
of the most popular races are held in Germany, Italy, Spain, Hungary, United
States, United Kingdom and Czechia. Each individual race consists of several
events which are divided into static and dynamic. In static events, the goal
is to present the conceptual design of the car, which is judged by experts
from the automotive industry. Static events include the engineering design
event, business presentation, and the manufacturing & cost event. In dynamic
events, the cars compete on several different tracks for the best time. The
dynamic events are different for each class. In the DV class, the dynamic
events consist of acceleration, skidpad, autocross, and trackdrive. For each of
these events, teams earn a certain number of points based on the performance
in that particular event. The overall winner is then the team with the most
points.

In all dynamic events, the vehicle is required to stay within the given track
delineated by traffic cones of different colors shown in Fig. 2.1. Hitting a
cone or leaving the track is penalized by extra time or even a disqualification
from that particular event. In the acceleration event depicted in Fig. 2.2,
the car has to autonomously accelerate as much as possible in a straight 75
meters long line before safely stopping at the end. The goal of this event is
to push the car to the limit in terms of maximum speed and the ability to
accelerate quickly. The skidpad track shown in Fig. 2.3 consists of two pairs
of concentric circles in a figure of eight pattern. The vehicle starts in the
middle, entering the right circle first, then entering the left, and alternating
until completing four circles on each side. The autocross and trackdrive events
are very similar. Both are driven on a closed-loop circuit of up to 1km in
length containing many challenging features such as chicanes, hairpin turns,
and decreasing-radius turns. The difference is that in the autocross event,
only a single lap is completed with teams trying to get the fastest single-lap
time. In trackdrive, on the other hand, the full 10 laps are driven and the
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Figure 2.1: Traffic cones are used to delineate the track.
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Small/Big orange cone

Figure 2.2: A depiction of the track for the acceleration event

teams compete for the fastest 10-lap time. A small segment of a track used
for these two events is shown in Fig. 2.4.

2.1 Autonomous System

To ensure that the autonomous cars successfully complete all dynamic events,
a multitude of sensors need to be used. The decision of which specific sensors
to use is up to the individual teams. The most common proprioceptive sensors
include wheel and ground speed sensors, GPS units, and internal measurement
units. Every car is also usually equipped with either an RGB camera (mono
or stereo) or a LiDAR or a combination of both. It is common to encounter
a setup with a LiDAR and multiple cameras positioned at different angles
to cover a wide field of view. However, using multiple sensors brings its own
difficulties such synchronization and sensor fusion.

In the years since the driverless class was established, two distinct ap-
proaches to the design of the autonomous system emerged – a reactive
approach and a SLAM-capable approach. With the reactive system, the
behavior of the car is determined solely by the current sensor inputs. In
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Figure 2.3: A depiction of the track for the skidpad event

other words, the reactive system does not retain any information about the
environment from the past observations. The reactive autonomous system is
both conceptually simple and easy to implement. An example of a reactive
algorithm is following the center line of the visible part of the track. The
center line is computed every time using the position of the cones extracted
from the current sensor input. A major disadvantage of this approach is
that it significantly limits the speed that the car can safely maintain. This
is because the car only sees as far as the sensors do and thus has to drive
defensively.

If a system that incorporates SLAM is used, the formula can use information
from the previous lap to reach faster speeds in areas where the vehicle
dynamics allow it. Knowledge of the full track also improves the path
planning of the system. It can, for example, anticipate sharp turns and plan
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Blue/Yellow cone
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Figure 2.4: A small section of the trackdrive/autocross track

accordingly. Thus, a SLAM-based system can bring a big advantage to the
team. However, compared to a reactive system, a successful implementation
of SLAM is significantly more complex to achieve. In addition, to ensure
safety, the autonomous system including SLAM, has to operate in real-time.
Considering that an electric formula can reach velocities exceeding 100km/h,
the system has to operate reliably at very high frequencies.

2.2 eForce Driverless

Team eForce Driverless was officially founded in 2019 as the first Formula
Student Driverless team in the Czech Republic. eForce Driverless was founded
by members of eForce FEE Prague Formula team which at that point had been
operating for nearly a decade in the electric category. From an organizational
standpoint, eForce Driverless remains as a semi-independent section of the
main electric team sharing resources and most importantly, members. In the
next few paragraphs, we summarize the history of the team, the challenges we
had to face, and a recollection of our first and unfortunately, as of writing this
thesis, the last race our team has attended. An in-depth description of the
founding of the team, its history, and an analysis from a project management
standpoint is given by [96].

eForce Driverless was founded by two long-time members of eForce at the
beginning of 2019. The original team counting approximately ten members
was assembled in March of that year. The first few months of this newly
founded team were challenging. None of the members had any previous
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experience with autonomous driving and the first few months were spent
doing research on the topic. Eventually, we built up a general idea of how
an autonomous formula should operate and what were the main components.
We realised that the work could essentially be split into two parts – hardware
& software. The hardware part included adapting one of the older formulas,
outfitting it with sensors and self-driving features, and making sure it complies
with the rules of Formula Student. The software part entailed writing the
actual software stack together with the design of detection, navigation, and
planning algorithms to allow for autonomous operation.

As we found out, the software part was comparatively easier. This was
mainly because at first, the software and algorithms could be implemented
on any computer without needing the physical car for testing. As such, after
a few months we were already working on cone detection and path planning
algorithms. The biggest hurdle slowing down our progress was the hardware
part. This part required completely rebuilding one of the cars from previous
seasons. The changes were numerous. Both steering and braking had to be
made automatic, which required many changes. In addition, the car now had
to carry more electronics, including cameras, a LiDAR, and the computing
unit, which necessitated reworking the power delivery as well. Many circuit
boards had to be redesigned and many new boards had to be made.

However, the problems we encountered were not just technical. The biggest
problem we faced was the lack of time and manpower. Our newly assembled
team did not possess the knowledge and experience that was required to
implement the hardware modifications. The members of the parent team,
which had the knowledge, were often busy working on the new electric car.
Up to this point, the team has never attempted to build two new cars in one
season. Unfortunately, this meant that we were not ready to participate in
the 2019 season. However, during the summer of 2019, we started cooperating
with Ing. Jan Čech, Ph.D. from the Center for Machine Perception at CTU
Prague. Mr. Čech proved to be instrumental in propelling our team forward,
providing much needed expertise in machine learning and computer vision.
The Center for Machine Perception also provided us with resources to purchase
several sensors, computing units, and various tools for which we are extremely
grateful. Thanks in no small part to Jan Čech and the Center for Machine
Perception, we were on schedule to compete in the 2020 season, which would
have been our first season ever.

After passing the entrance tests, we qualified to multiple races held that
season. The races were FS Czech, FS Spain, and FS Germany, which is
famously difficult to be accepted to. However, due to the Covid-19 pandemic,
which was by that time in full swing in Europe, all planned races for the 2020
season were cancelled. Instead, a fully online competition called FS Online
was organized to at least partially replace the cancelled races. As this was
our only chance to compete that season, our team decided to participate in
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Figure 2.5: The FS Online simulator used to facilitate virtual races

this virtual event. Other teams that attended included teams from MIT,
Delft, Munich, Hamburg and others. Since it was not possible to organize an
in-person event, FS Online was to be held completely online including the
races. To make this possible, we were provided with a simulation environment
and a virtual formula which would be controlled by our autonomous system.
The simulation environment is shown in Fig. 2.5.

The formula was equipped with virtual cameras, LiDARs, an inertial
measurement unit, ground speed sensors, and GPS. FS Online held two
dynamic events – autocross and trackdrive. These events were held for 3
consecutive days and each day the difficulty of the track increased. Because
the competition was announced at a relatively short notice, many components
of our autonomous system were not ready in time. Hence, we decided to
design a simple yet robust reactive system using input from the virtual LiDAR.
Using a combination of filtering and clustering, the LiDAR pointclouds were
turned into individual traffic cones delineating the track. With these cones,
waypoints marking the center line were constructed. The controller then
steered the car so that it stayed as close to these waypoints as possible. This
system proved as a fairly reliable and robust option bringing us a lot of
success. In a few events, our formula was the only one able to complete the
full track without a problem. Overall, the FS Online competition gave us a
lot of experience and confidence in our capabilities and our algorithms and
pushed us even more to more sophisticated solutions, most notably, SLAM.
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Chapter 3

Recursive Bayesian filter

Recursive Bayesian filtering [16] is a technique to estimate the state of a system
using the knowledge of the system state in the past combined with noisy
measurements. The system is assumed to be stochastic and evolving over time.
Recursive filtering allows one to repeatedly estimate the system state as new
measurements become available. More specifically, the Recursive Bayesian
filter works by recursively estimating the posterior probability density of the
system state given all previous measurements. Recursive Bayesian filtering is
used in a wide range of areas such as signal processing, navigation, tracking,
econometrics, and healthcare [52, 44, 27, 75, 10, 76, 87, 85]. In robotics,
many problems involving tracking, localization, and mapping are modeled
and solved using special cases of the Recursive Bayesian filter such as Kalman
and Particle filters [9, 97, 5, 88, 72]. Furthermore, many SLAM formulations,
e.g., EKF-SLAM [15] and FastSLAM [64] are derived directly from a Recursive
Bayesian filter.

3.1 Derivation

Consider a dynamical system or a stochastic process that evolves in discrete
time steps denoted as 1, 2, ..., k. The process model, which describes how the
system evolves in time, is stochastic and given as follows

xk = fk(x1:k−1) + qk, (3.1)

where xk is the system state at time k, fk is the process model at time
k, x1:k−1 is a sequence of system states from 1 to k − 1 and qk is a random
variable functioning as a source of additive noise. Notice that the evolution
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... xk−1 xk xk+1 ...

zk−1 zk zk+1

Figure 3.1: The recursive Bayes filter can be applied to any stochastic system
that can be modeled as a hidden Markov model (HMM). That is, the model is
described by a stochastic state transition function together with a stochastic
observation.

of the system consists of a deterministic component fk and a stochastic
component vk. In an alternative notation, the new state can be expressed as:

xk ∼ p(x|x1:k−1) (3.2)

We assume that the process model has the Markov property, i.e., it holds
that

p(xk|x1:k−1) = p(xk|xk−1). (3.3)

In order to make estimates of the system state, we also need a way to
measure the state. Hence, we assume the ability to take noisy measurements,
also called observations, of the true system state which is not known. The
measurement of xk is given as

zk = hk(x1:k) + rk (3.4)

Here, zk is the measurement at time k, hk is the measurement model and
rk is again a source of additive noise. We may write this as

zk ∼ p(z|x1:k). (3.5)

Similarly to the process model, the measurement model is also assumed to
depend only on the current state xk. Mathematically:

p(zk|x1:k) = p(zk|xk). (3.6)
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The above description essentially constitutes a Hidden Markov Model
(HMM) with a state transition function fk and a measurement function hk

as shown in Fig. 3.1. In Bayesian filtering, the posterior density p(xk|z1:k)
is computed by combining the previous belief p(xk−1|z1:k−1) and a new
measurement zk. All information about the system is contained in the
posterior. The computation of the posterior is split into two steps – the
prediction step and the correction step. In the prediction step, the filter
first computes the prior (also called proposal) distribution p(xk|z1:k−1) using
only the process model. This step can be thought of as propagating the
previous belief given by p(xk−1|z1:k−1) using the system dynamics. To give a
concrete example, in the robotics setting, the prediction step can be imagined
as predicting the new position of a moving robot based on the data provided
by an inertial measurement unit (IMU) or a GPS. The prior distribution is
derived as follows:

p(xk|z1:k−1) = p(xk, z1:k−1)
p(z1:k−1) =

∫
p(xk, xk−1, z1:k−1)dxk−1

p(z1:k−1) (3.7)

=
∫

p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)p(z1:k−1)dxk−1
p(z1:k−1)

(3.8)

=
∫

p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1 (3.9)

Markov=
∫

p(xk|xk−1)︸ ︷︷ ︸
process model

p(xk−1|z1:k−1)︸ ︷︷ ︸
posterior at k−1

dxk−1. (3.10)

In equation (3.7), we used the Chapman-Kolmogorov identity. In the last
equation, we used the Markov property of the process model. Note that the
result only depends on the process model and the previous posterior. The
second step of the filter is the correction step. Informally, the correction step
corrects the prior distribution using the information from the newly acquired
measurement. Formally, it computes the new posterior density p(xk|z1:k)
using the prior p(xk|z1:k−1) together with the measurement zk:
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Time update:
predict xk given

the process model

Measurement update:
correct xk using

the measurement zk

Figure 3.2: The recursive Bayesian filter computes the posterior in two steps.
First, in the prediction step, the prior is computed by propagating the state
using the process model. In the correction step, the prior is corrected using the
newly acquired measurement.

p(xk|z1:k) = p(xk|zk, z1:k−1) (3.11)

= p(xk, zk|z1:k−1)
p(zk|z1:k−1) (3.12)

= p(zk|xk, z1:k−1)p(xk|z1:k−1)
p(zk|z1:k−1) (3.13)

Bayes= p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) (3.14)

= p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

(3.15)

∝ p(zk|xk)︸ ︷︷ ︸
measurement

model

p(xk|z1:k−1)︸ ︷︷ ︸
prior

. (3.16)

In equation (3.15), we used the measurement independence assumption
(3.6). In essence, the correction step is an application of the Bayes formula.
The measurement model p(zk|xk) is the likelihood, p(xk|z1:k−1) is the prior
and the denominator p(zk|z1:k−1) is the evidence. Note that the evidence
does not depend on the state. It can thus be thought of as a normalizing
constant and in many applications it need not be computed at all. Fig. 3.2
illustrates the prediction-correction loop of the filter. Of note is also the fact
that both the prediction and correction steps only need to remember the
previous posterior to compute the next one. It is therefore not necessary to
remember the full history of the filter.

Since a Bayesian filter provides the full posterior, we have the freedom of
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computing various estimators of this probability density. There are many dif-
ferent possibilities, however, here we list some of the most common estimators.
A thorough review is provided in [16]...1. Maximum a posteriori (MAP) – The MAP estimate finds the largest

mode of the posterior which is given by

x̂MAP
k = arg max

xk

p(xk|z1:k)...2. Maximum likelihood (ML) – The ML estimate is a special case of MAP
in which the prior given by p(xk|z1:k−1) is disregarded. The estimate is
then

x̂ML
k = arg max

xk

p(zk|xk)...3. Minimum mean square error (MMSE) – MMSE selects x̂MMSE
k which

minimizes

E
[
||xk − x̂k||2|z1:k

]
=
∫
||xk − x̂k||2 p(xk|z1:k)dxk.

As we show in Appendix A.1.1, this formulation leads to

x̂MMSE
k = E [xk|z1:k] .

In other words, the estimator is a conditional expectation of the posterior.
A comparison between the MAP and MMSE estimators is shown in Fig.
3.3.

It is important to realise that computing the full posterior of the Bayesian
filter is not tractable in the vast majority of cases. To obtain the posterior,
we need to evaluate several integrals which typically do not have a closed-
form solution, except for a few restrictive cases. One such case is when the
process and measurement models are linear and the noise is Gaussian. These
restrictions lead to the well-known Kalman filter [43] which we describe in
the following chapter. In other cases when the posterior cannot be evaluated
exactly, a numerical integration can be used to approximate the posterior. A
particle filter [4] is an example of a Monte Carlo technique that approximates
the posterior using a finite set of samples called particles. The theory behind
particle filters, which play an integral part in FastSLAM, is described in more
detail in chapter 5.
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x̂MAP x̂MMSE

p(xk|zk)

Figure 3.3: The difference between the maximum a posteriori (MAP) and the
minimum mean square error (MMSE) estimator on a multimodal posterior. For
x̂MMSE , the estimator is equal to the conditional expectation while for x̂MAP ,
it is the highest mode of the posterior. In the Gaussian case, the two estimators
coincide.
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Chapter 4

Kalman filter

Kalman filter is one of the few special cases of the Recusive Bayesian filter for
which there is an exact analytical solution [43]. Despite being introduced more
than 50 years ago, Kalman filter still plays an important role in navigation and
tracking of autonomous vehicles and aircraft, signal processing, econometrics
and many more [39, 61, 65, 40, 5, 88, 72]. In robotics, Kalman filter is mainly
used in tasks involving tracking and Simulatenous Localization and Mapping
[7, 64].

Kalman filter is of particular importance due to the fact that under cer-
tain assumptions, the filter is unbiased and optimal. Optimal in this case
means that the Kalman filter minimizes the minimum mean square error
(MMSE) described in (3). Unfortunately, the required assumptions are rather
restrictive. Kalman filter requires a linear process and measurement model
in combination with a Gaussian noise. As very few systems can be modeled
using linear models in practise, the application of the basic Kalman filter
is rather limited. However, the linearity assumption of the filter may be
relaxed. This relaxation sacrifices the optimality of the filter. Nevertheless,
the so-called Extended Kalman filter (EKF) [59] is a widely used modification
that performs well provided the nonlinearity of the system is not too severe.

4.1 Model description

The Kalman filter requires that the process model be linear. We can write
this as
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xk = fk(xk−1, uk) + qk (4.1)
= Fkxk−1 + Bkuk + qk. (4.2)

In the above equation, Fk is the state-transition matrix and Bk is the
control-input model applied to the control vector uk. The process model is
again stochastic containing additive noise given by qk ∼ N (0, Qk) which is a
zero-mean Gaussian with covariance Qk. Similarly, the measurement model
is also linear:

zk = hk(xk) + rk (4.3)
= Hkxk + rk. (4.4)

The matrix Hk is the linear measurement model. Analogously, vk ∼
N (0, Rk) is the zero-mean Gaussian measurement noise with covariance Rk.

4.2 Derivation

The Kalman filter can be derived in many ways. Originally, it was derived
using the orthogonal projection method, however, it can also be posed as
a least-squares minimization. Since Kalman filter is a linear instance of
the Recursive Bayesian filter, it is also possible to derive the prediction
and correction step directly from the Bayesian filter. Since both the state
transition and measurement functions are linear, both p(xk|xk−1, uk) and
p(zk|xk) are normally distributed:

p(xk|xk−1, uk) = N (xk; Fkxk−1 + Bkuk, Qk) (4.5)
p(zk|xk) = N (xk; Hkxk, Rk). (4.6)

Suppose that the posterior at k − 1 is normally distributed according to

p(xk−1|z1:k−1, u1:k−1) = N (xk−1; x̂k−1|k−1, Pk−1|k−1). (4.7)

As we shall see later, the posterior distribution of the Kalman filter is
indeed Gaussian. Now, substituting these into the prediction step of the
Recursive Bayesian filter (3.7), we obtain
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p(xk|z1:k−1, u1:k) =
∫

p(xk|xk−1, uk)p(xk−1|z1:k−1, u1:k−1)dxk−1

(4.8)

=
∫
N (xk;Fkxk−1 + Bkuk, Qk)N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1. (4.9)

The above integral is a product of two Gaussians which has a closed-
form solution. The integral evaluates to a Gaussian with mean x̂k|k−1 and
covariance Pk|k−1. As a Gaussian distribution is fully described by its first
two moments, this gives us an explicit prediction step of the Kalman filter:

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk predicted estimate (4.10)
Pk|k−1 = FkPk−1|k−1F T

k + Qk estimate covariance (4.11)

The update step is derived analogously. We again show only the first steps
for brevity, however, the complete derivation can be found in [58].

p(xk|z1:ku1:k) = p(zk|xk, u1:k)p(xk|z1:k−1, u1:k−1)
p(zk|z1:k−1) (4.12)

= p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

(4.13)

=
N (zk; Hkxk, Rk) N (xk; x̂k|k−1, Pk|k−1)∫
N (zk; Hkxk), Rk) N (xk; x̂k|k−1, Pk|k−1) dxk

(4.14)

The posterior can again be shown to be Gaussian. This means that at every
step of the filter, the distribution at hand is Gaussian. As such, to represent
the filter, one only needs to store the mean and covariance. Specifically, the
correction step is given by the following equations:

yk = zk −Hkx̂k|k−1 residual (4.15)
Sk = HkPk|k−1HT

k + Rk residual covariance (4.16)
Kk = Pk|k−1HT

k S−1
k Kalman gain (4.17)

x̂k|k = x̂k|k−1 + Rkyk corrected estimate (4.18)
Pk|k = (I −KkHk) Pk|k−1 corected covariance (4.19)
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Predict x̂k|k−1

Correct x̂k|k

Initial estimate x̂0

k ← k + 1

uk

zk

Figure 4.1: A block diagram of the recursive operation of the Kalman filter.
The filter starts with an initial estimate x̂0 and P0. Then, in a loop, the filter
first uses the control input to predict the next state of the system, which is
subsequently refined using the measurement zk.

Here, yk is called the innovation or measurement residual. Sk is the residual
covariance and Kk is the Kalman gain, a measure of how much the filter trusts
the measurement zk over the predicted state. When the covariance of the
estimate is small compared to the measurement covariance, the correction step
tends to put more weight on the predicted estimate which manifests by the
Kalman gain going to zero. On the other hand, when the estimate covariance
is relatively large, the filter will correct closer to the measurement. A rigorous
demonstration of this is provided in the Appendix A.2.1. Finally, the filter
computes a new estimate covariance, taking into account the uncertainty of
the new measurement. In a typical case, the resulting estimate uncertainty is
lower than either the measurement or the previous estimate uncertainty. A
block diagram of the Kalman filter operation is shown in Fig. 4.1. A single
correction step of the Kalman filter is shown graphically in Fig. 4.2.

4.3 Intuition for a 1D case

The Kalman filter equations may seem impenetrable at first glance. To
build some intuition for them, it may be helpful to derive the Kalman filter
for the one-dimensional case where matrix multiplication becomes a simple
scalar multiplication. It is then possible to draw some parallels between this
simple case and the general multidimensional case. First, suppose we wish
to combine two Gaussian measurements (x1, σ2

1) and (x2, σ2
2) into a single

estimate. If σ2
1 = σ2

2, we can simply take the average to get x̂ = 1
2(x1 + x2).

If the uncertainties of the measurements differ, we can use the maximum
likelihood principle to derive the most likely estimate. Formally, given two
i.i.d. measurements x1 and x2 with corresponding uncertainties σ2

1 and σ2
1,

we wish to maximize the likelihood
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p(x1:k−1|z1:k−1) p(zk|xk) p(xk|z1:k)

Figure 4.2: An example of a 1D (top) and a 2D (bottom) Kalman update. The
previous belief (blue) and a measurement (orange) combine into the corrected
belief (green). Note that the new variance is lower than either of the previous
estimate or the measurement.

p(x1, x2|x̂) = p(x1|x̂)p(x2|x̂) =
2∏

i=1
exp

(
−(xi − x̂)2

σ2
i

)
. (4.20)

More generally, for n measurements we maximize:

p(x1, x2, ..., xn|x̂) =
n∏

i=1
p(xi|x̂) =

n∏
i=1

exp
(
−(xi − x̂)2

σ2
i

)
. (4.21)

Taking the natural logarithm and computing the derivative to find the
maximum, we obtain:
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L = ln
(

n∏
i=1

exp
(
−(xi − x̂)2

σ2
i

))
= −

n∑
i=1

(xi − x̂)2

σ2
i

(4.22)

∂L
∂x̂

=
n∑

i=1

(
xi − x̂

σ2
i

)
= 0. (4.23)

Solving for two measurements (n = 2), we arrive at the following formula

x̂ = σ2
2

σ2
1 + σ2

2
x1 + σ2

1
σ2

1 + σ2
2

x2. (4.24)

Since this is a linear combination of two Gaussians, the variance of x̂ is
given as

σ̂2 = V ar[x̂] = V ar

[
σ2

2
σ2

1 + σ2
2

x1

]
+ V ar

[
σ2

1
σ2

1 + σ2
2

x2

]
(4.25)

= σ4
2σ2

1
(σ2

1 + σ2
2)2 + σ4

1σ2
2

(σ2
1 + σ2

2)2 (4.26)

= σ2
1σ2

2
σ2

1 + σ2
2

. (4.27)

Let us now consider a very simple one-dimensional dynamic system given
by the following process and measurement models:

xk = xk−1 + c + wk (4.28)
zk = xk + vk. (4.29)

Here, c is a constant and wk and vk are the process and measurement noise,
respectively. If we rearrange the formulas for x̂ and σ̂2 and apply them to
this model, we get a result that is starting to resemble the Kalman filter
equations.

x̂ =
(

σ2
2

σ2
1 + σ2

2

)
x1 +

(
σ2

1
σ2

1 + σ2
2

)
x2 = x1 + σ2

1(x2 − x1)
σ2

1 + σ2
2

(4.30)

σ̂ = σ2
1σ2

2
σ2

1 + σ2
2

= σ2
1 −

σ4
1

σ2
1 + σ2

2
(4.31)
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........................ 4.4. Asymptotic behavior and filter divergence

If we think of the values (x1, σ2
1) and (x2, σ2

2) respectively as the prior belief
and the current measurement, we can notice similarities with the general
Kalman filter equations. Setting y = x2 − x1 and k = σ2

1(σ2
1 + σ2

2)−1, we
can see that the one-dimensional filter equations are almost identical to the
general case:

General KF 1D KF (4.32)
x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk x̂k|k−1 = xk−1|k−1 + c (4.33)
Pk|k−1 = FkPk−1|k−1F T

k + Qk σ̂k|k−1 = σ̂k−1|k−1 + q2
k (4.34)

yk = zk −Hkx̂k|k−1 yk = zk − x̂k|k−1 (4.35)
Sk = HkPk|k−1HT

k + Rk s2
k = σ̂k|k−1 + r2

k (4.36)
Kk = Pk|k−1HT

k S−1
k kk = σ̂k|k−1(s2

k)−1 (4.37)
x̂k|k = x̂k|k−1 + Kkyk x̂k|k = x̂k|k−1 + Kkyk (4.38)
Pk|k = (I −KkHk) Pk|k−1 σ̂k|k = (1− kk)σ̂k|k−1 (4.39)

4.4 Asymptotic behavior and filter divergence

The Kalman filter provides an ubiased estimate of the system state since
E[E[xk|zk]] = xk by the law of total expectation. The convergence of the
estimate itself is conditioned on the process and measurement models. If they
are both noisy, the estimate covariance will not converge to zero. Moreover,
under certain conditions, the Kalman filter can diverge, i.e., the estimation
error may grow unbounded. The most common reason for a filter divergence
is an incorrect system model. If either the process or measurement models
do not accurately reflect the system dynamics, the filter may diverge. A
thorough investigation of the divergence conditions is given by [25, 94].

The asymptotic behaviour of the Kalman filter can be studied using the
the observability and reachability properties of dynamical systems.

Definition 4.1. A dynamical system given by

xk = Fxk−1 + vk (4.40)
zk = Hxk + wk, (4.41)

is said to be observable if x1 can be unambiguously determined from
{z1, z2, ..., zn, }.
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Definition 4.2. A dynamical system given by

xk = Fxk−1 + Buk + vk (4.42)
zk = Hxk + wk, (4.43)

is said to be reachable if given a starting state x1 = 0 and an end state
xn, there is a sequence of control inputs {u1, u2, ..., un, } such that xn can
be reached from x1.

Observability and reachability can be tested by constructing special matrices
and verifying they have full rank. More details can be found in [98]. Assuming
the system in question is observable, the error covariance P is bounded.
Moreover, if the system is also reachable, the error covariance is guaranteed
to converge and can be computed in a closed form from the following system
of equations:

M = FPF T + Q (4.44)
K = PHT (HMHT + R)−1 (4.45)
P = (I −KH) M (4.46)

The speed of convergence is typically very fast as is shown in figure (4.3).

4.5 Extended Kalman filter

Unfortunately, most systems cannot be accurately modeled by a set of linear
equations. When either the process model or the measurement model is
nonlinear or both, the Kalman filter cannot be used. However, the Kalman
filter can be modified to work with these nonlinearities. This modification is
the so-called Extended Kalman filter (EKF) [59], which works by linearizing
the process and measurement models by means of the first-order Taylor
approximation. The resulting filter can no longer guarantee optimality.
Nevertheless, it typically performs well, provided the model nonlinearities are
not too severe [71, 51, 89].

The original Kalman filter formulation requires only minor changes to
adapt it to the nonlinear case. Below, we show the formulations of both KF
and EKF side-by-side for easy comparison.
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Figure 4.3: An example of a one-dimensional Kalman filter estimating a system
state. The system model is given by xk = xk−1 + c + wk and zk = xk + vk. The
process noise is large enough for xk to deviate significantly from the prediction
(black). Using the measurements (pink), the filter can estimate the real value of
xk reasonably well. The second plot shows the uncertainty of x̂k. Additionally,
we can observe that the uncertainty quickly converges. Indeedn, the estimated
uncertainty is within 10−5 of the theoretical value after 40 iterations.

Kalman filter Extended Kalman filter

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk x̂k|k−1 = fk

(
x̂k−1|k−1, uk

)
(4.47)

R̂k|k−1 = FkPk−1|k−1F T
k + Qk (4.48)

yk = zk −Hkx̂k|k−1 yk = zk − hk

(
x̂k|k−1

)
(4.49)

Rk = HkPk|k−1F T
k + Rk (4.50)

Rk = Pk|k−1HT
k R−1

k (4.51)
x̂k|k = x̂k|k−1 + Rkyk (4.52)
Pk|k = (R−RkHk) Pk|k−1 (4.53)
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4. Kalman filter.....................................
In the case of EKF, Fk and Hk are replaced by the Jacobians of the process

and measurement models.

Fk = ∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

(4.54)

Hk = ∂h

∂x

∣∣∣∣
x̂k|k−1

(4.55)

The Jacobians are evaluated at the previous state estimate and the predicted
state, respectively. Note that the only major difference between KF and EKF
is the need to compute the Jacobians of the process and measurement models.
The prediction and correction equations remain unchanged.
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Chapter 5

Particle filter

A limitation of the Kalman filter is the requirement for a parametric posterior
given by a multivariate Gaussian. This means that the Kalman filter funda-
mentally cannot represent non-Gaussian, possibly multimodal distributions.
Multimodal posteriors arise in situations where the motion and measurement
models induce ambiguity due to the inherent noise. An example from robotics
is the problem of localization in a known environment. In that case, ambiguity
can manifest if multiple locations in the environment have similar features
and thus are difficult to distinguish. Since multiple hypotheses are possible,
this situation cannot be adequately modeled by a Gaussian.

Particle filters are a nonparametric method and thus do not place any
constraints on the posterior as the Kalman filter does. As a consequence,
particle filters can represent arbitrary distributions. In addition, they can
handle nonlinear and non-Gaussian motion and measurement models. To-
gether with Kalman filters, Partical filters belong to the family of Recursive
Bayes filters. The fundamental idea which makes particle filters different, is
the way they represent the posterior distribution. The posterior is given as a
sum of a finite number of weighted samples called particles. Each particle
represents one possible state of the system. The more particles are used, the
more closely the filter is able to approximate the true posterior density.

Particle filters have been successfully used in practise to solve many esti-
mation and tracking problems [97, 33, 32, 29]. One notable example is Monte
Carlo localization (MCL) [20]. In MCL, a robot is placed in an unknown
location in an otherwise known environment. The goal of the robot is to
move through the environment and localize itself by observing features in
the environment. The ability to represent multiple hypotheses together with
nonlinear motion makes particle filters comparatively robust. However, the
number of particles needed to accurately model the full posterior grows ex-
ponentially with the dimension of the state in the worst case. This restricts
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5. Particle filter.....................................
particle filters to low-dimensional problems such as the aforementioned Monte
Carlo localization.

5.1 Representing the posterior

Formally, particle filters approximate the posterior by a weighted sum of
Dirac impulses:

p(xk|z1:k) ≈
N∑

i=1
wi

kδ(xk − xi
k), (5.1)

where N is the number of particles, wi
k is the weight of particle xi, also

called an importance factor, {x1
k, ..., xN

k } are the particles and δ(.) is the
Dirac Delta distribution. To make the approximation an actual probability
density, we require that the particle weights are normalized:

N∑
i=1

wi
k = 1. (5.2)

Informally, the particle weights correspond to how much a given particle
differs from the true state. If the weight is small, the particle is far away
from the true state and vice versa. Intuitively, if we use enough particles,
the approximated density should in principle get arbitrarily close to the true
posterior density we are interested in. However, since the number of particles
is necessarily finite, particle filters are not optimal state estimators but merely
an approximation. Nevertheless, convergence to the true posterior can be
shown in certain cases [18].

5.2 Importance sampling

In an ideal situation, the particles would be sampled directly from the posterior
density. This is in general impossible as most of the time, the posterior does
not have a closed form or is difficult or impossible to sample from. We instead
use a technique called importance sampling that allows us to sample from a
different, typically much simpler proposal distribution. The particle weights
are then adjusted to correct these samples. Suppose we want to compute a
statistic of the form Ep[f(x)] of the distribution p(x). Assume that p(x) is
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............................ 5.3. Sequential Importance Sampling

difficult or impossible to sample from. Luckily, with importance sampling,
we can sample from a different distribution by using a simple algebraic trick:

Ep [f(x)] def=
∫

f(x)p(x)dx (5.3)

=
∫

f(x)p(x)
q(x) q(x)dx (5.4)

def= Eq

[
f(x)p(x)

q(x)

]
. (5.5)

Here, q(x) is called the proposal density. This density can be arbitrary,
subject only to p(x) > 0⇒ q(x) > 0. That is, the support of p is contained
in q. The above result states that to compute an estimate of Ep[f(x)], we
can instead sample from a different proposal distribution and compute the
estimate using this weighted sample. For example, we can estimate the
expectation Ep[x] as follows:

µ̂ = 1
n

n∑
i=1

xip(xi)
q(xi) = 1

n

n∑
i=1

wixi. (5.6)

Returning back to filtering, the posterior p(xk|z1:k) can therefore be approx-
imated by sampling particles from a suitable proposal distribution q(xk|z1:k)
and adjusting the weights accordingly:

wi
k ∝

p(xi
k|z1:k)

q(xi
k|z1:k) . (5.7)

5.3 Sequential Importance Sampling

Sequential importance sampling (SIS) is the simplest example of a particle
filter. SIS takes advantage of the fact that under certain assumptions, sampling
particles and calculating particle weights can be done recursively by using
the particles and weights from the previous time step. To derive the SIS
algorithm, we need to consider the full posterior p(x1:k|z1:k) as opposed to
the marginal posterior p(xk|z1:k) used so far. That is, x1:k contains the full
history of the states from time step 1 to k. The approximate posterior density
changes slightly:
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p(x1:k|z1:k) ≈
N∑

i=1
wiδ(x1:k − xi

1:k). (5.8)

Here, the particles contain the full history xi
1:k = {xi

1, ..., xi
N}. Each

particle can thus be thought of as a separate path or trajectory through the
state space. The weight is then computed analogously as

wi
k ∝

p(x1:k|z1:k)
q(x1:k|z1:k) . (5.9)

We now show how the above weight update is computed recursively using
weights wk−1. First, we can expand the posterior into a product of the
measurement and process model and the posterior at a previous time step:

p(x1:k|z1:k) Bayes= p(zk|x1:k, z1:k−1)p(x1:k|z1:k−1)
p(zk|z1:k−1) (5.10)

= p(zk|x1:k, z1:k−1)p(xk|x1:k−1, z1:k−1)p(x1:k−1|z1:k−1)
p(zk|z1:k−1)

(5.11)
Markov= p(zk|xk)p(xk|xk−1)p(x1:k−1|z1:k−1)

p(zk|z1:k−1) (5.12)

∝ p(zk|xk)p(xk|xk−1)p(x1:k−1|z1:k−1) (5.13)

Note that we can obtain the standard recursive formula of the marginal
posterior p(xk|z1:k) from the above equation (5.12) by marginalizing out
x1:k−1 (see Appendix A.3.3 for more details). For the next step, we assume
that the proposal distribution factorizes in a natural way:

q(x1:k|z1:k) = q(xk|x1:k−1, z1:k)q(x1:k−1|z1:k−1). (5.14)

Substituting (5.13) and (5.14) into (5.9), we obtain
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wi
k ∝

p(x1:k|z1:k)
q(x1:k|z1:k) (5.15)

=
p(zk|xi

k)p(xi
k|xi

k−1)
q(xi

k|xi
1:k−1, z1:k)

p(xi
1:k−1|z1:k−1)

q(xi
1:k−1|z1:k−1)︸ ︷︷ ︸

wi
k−1

(5.16)

= wi
k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

1:k−1, z1:k) . (5.17)

If we further assume that the proposal depends only on xk−1 and zk, that
is,

q(xk|x1:k−1, z1:k) = q(xk|xk−1, zk), (5.18)

the weight correction becomes

wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)
q(xi

k|xi
k−1, zk) . (5.19)

Note that in the last equation, the conditioning on the full path x1:k
disappears. This means that the particles only need to store the latest state
estimate as opposed to the whole path history. Moreover, only the last
measurement zk need to be stored. As a consequence of this fact, the memory
required to store the particles is bounded and independent of the number
of time steps. The SIS filter uses the above recursive formula as shown in
Algorithm 1. In every iteration of the SIS filter, particles are drawn from the
proposal distribution and their weights are corrected using (5.19).

Unfortunately, the SIS filter is susceptible to sample degeneracy [23, 4].
Sample degeneracy is a phenomenon caused by the fact that the variance
of the unnormalized weights always increases regardless of the choice of the
proposal distribution [23]. This means that at a certain point, all but one
particle will have an almost zero weight thus having a negligible contribution
to the posterior density.

5.4 Sampling importance resampling filter

The Sampling importance resampling (SIR) [45] filter attempts to solve
the problem of sample degeneracy by adding a resampling step to the SIS
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Algorithm 1: SIS Filter
1 for k ← 1 to K do
2 Draw xi

k ∼ q(xk|xi
k−1, zk)

3 Compute particle weights wi
k according to (5.19)

4 end

algorithm. During the resampling step, a new unweighted posterior is created
from the old one in order to improve the quality of the overall particle set.
The goal is to remove particles with very low weights whose contribution
to the distribution is miniscule. Resampling is typically done by drawing
particles with replacement from the old set with a probability of being selected
proportional to the weight of the particle. In this way, particles with larger
weights have a higher chance of being selected multiple times. On the other
hand, particles with a very low weight are likely to die out. This step is
reminiscent of genetic algorithms [100] where a similar scheme ensures the
so-called survival of the fittest. Fig. 5.1 depicts the resampling step. The
approximate posterior produced by the SIR filter has been shown to converge
to the true posterior almost surely [18]. There are many popular resampling
strategies which have been the subject of many studies [66, 67, 69, 28, 35, 21,
38, 91]. In the following sections, we will introduce a few popular techniques
described in the literature.

Algorithm 2: SIR filter
1 for k ← 1 to K do
2 Draw xi

k ∼ q(xk|xi
k−1, zk)

3 Compute particle weights wi
k according to (5.19)

4 Resample particles based on 5.5
5 end

5.5 Resampling strategies

The resampling step aims to reduce the variance of the weights and thus ensure
that the majority of the particles contribute meaningfully to the posterior
approximation. In practical terms, this is done by sampling with replacement
from the old particle set. The sampling is carried out in proportion to the
particle weight so that particles with higher weight are selected on average
more often than particles with a lower weight. We can state this condition
precisely, but in order to do that, we need to define a few terms:

Definition 5.1. An offspring vector denoted as {o1, ..., oN} given particles
{x1

k, ..., xN
k } is a vector where oi defines how many times a particle xi

k will
be replicated in the resampled particle set.
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q(xk|xi
k−1, zk)

wk(xk)

Figure 5.1: A visual representation of resampling in particle filters. The black
curve represents the proposal distribution while the orange curve shows the
corrected weights. The particles are depicted as circles whose size depends on
the particle weight. After resampling, the weights are reset. Notice also that
particles with higher weight are sampled multiple times.

Definition 5.2. An ancestor vector denoted as {a1, ..., aN} given particles
{x1

k, ..., xN
k } is a vector where ai defines which particle will appear at index

i in the resampled particle set. In other words, xai is the ancestor of the
particle at index i.

Both the offspring and ancestor vectors encode the output of a resampling
procedure. These two representations are equivalent and one can easily
convert between them as shown in Algorithm 4 and 3. Sometimes it is easier
to work with one representation over the other. With these definitions, we
can formalize what we mean by sampling in proportion to the weights. The
most common way to define the proportionality is as follows [67, 21]:

E(oi|{w1, ..., wN}) = Nwi∑N
j=1 wj

, (5.20)

which, assuming normalized weights, simplifies to

35



5. Particle filter.....................................
E(oi|{w1, ..., wN}) = Nwi. (5.21)

Here, N is again the number of particles, wi is the particle weight and and oi

is an element of the offspring vector. In simple terms, this formula states that
in expectation, the replication count for a given particle should be proportional
to its weight. This is sometimes called the unbiassedness condition [67]. There
exists a large number of both sequential and parallel resampling algorithms
which satsify this condition. The most common sequential ones include
multinomial, stratified, and systematic sampling. Common parallel algorithms
include Metropolis-Hastings and Acceptatnce-Rejection sampling [67]. To
keep this chapter focused on the theory of particle filters, a detailed description
of these algorithms is given in the Appendix A.3.1.

Algorithm 3: Offspring-To-Ancestor
input : An offspring vector {o1, ..., oN}
output : An ancestor vector {a1, ..., aN}

1
2 k = 1
3 for i← 1 to N do
4 for j ← 1 to oi do
5 ak = i
6 k = k + 1
7 end
8 end

Algorithm 4: Ancestor-To-Offspring
input : An ancestor vector {a1, ..., aN}
output : An offspring vector {o1, ..., oN}

1
2 for i← 1 to N do
3 j = ai

4 oj = oj + 1
5 end

5.6 Effective sample size

Care must be taken when deciding how often the resampling step of a
particle filter should be carried out. One might assume that resampling
after every iteration would be the most optimal, however, that is usually
not the case. First, there is no need to resample when no new measurement
is taken as no new information is gained and the particle weights remain
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unchanged. Second, depending on the implementation, resampling can be
a costly operation relative to the rest of the filter. Hence, less frequent
resampling is often preferred for performance reasons. In addition, resampling
too often can lead to sample impoverishment when the process noise is low
[55]. An impoverished particle set contains very little diversity in its state
estimates. In other words, the posterior distribution is very peaked. Such
an impoverished sample fails to properly capture the shape of the posterior
density. On the other hand, not resampling often enough may introduce
Sample degeneracy instead [55]. It is therefore important to carefully balance
the effects of sample impoverishment and sample degeneracy by resampling
only when needed. A common way to decide whether to resample is to
measure the the effective sample size metric[47, 56, 23] Neff defined as

Neff = 1∑N
i=1 (wi)2 . (5.22)

We again assume normalized weights. When Neff of the particles drops
below a chosen threshold, the particle set is resampled. The choice of the
threshold is typically a fraction of N , the size of the particle set. A Common
value of the threshold is 0.5N , meaning resampling is only carried out when
Neff < 0.5N . Nevertheless, the exact value of the threshold should be tuned
and validated for the model at hand as the model characteristics will have
an impact on the behavior of the particles. We can incorporate Neff into
the SIR filter to obtain the most common variant of the particle filter. The
pseudocode is shown in Algorithm 5.

Algorithm 5: General particle filter
1
2 for k ← 1 to K do
3 Draw xi

k ∼ q(xk|xi
k−1, zk)

4 Compute particle weights wi
k according to (5.19)

5 Compute Neff

6 Resample particles if Neff below a threshold
7 end

5.7 Choice of proposal distribution

As we have discussed previously, particle filters use a proposal density to
sample particles. This because the true density is often difficult or even
impossible to sample from. In order for the filter to work recursively, we
imposed some conditions on this proposal distribution. We required that
it factorizes nicely and that it has the Markov property. Any distribution
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satsifyinn these conditions can in theory be used. However, some distributions
are more suitable than others. A less informed distribution will produce most
samples in low-density regions leading to very low particle weights. This
means that a lot of computational effort is devoted to particles that are likely
to be resampled away. On the other hand, a more informed distribution
reduces the effect of sample degeneracy and can thus achieve the same level
of accuracy with significantly fewer particles.

A popular choice of the proposal distribution is the process model given
by p(xk|xk−1). The process model is a good choice for two reasons. First, it
is usually pretty well understood and easy to sample from. Second, in the
absence of measurements, the process model is the best guess for how the
system may evolve. Substituting the process model into (5.19) yields:

wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)
p(xi

k|xi
k−1) (5.23)

= wi
k−1 p(zk|xi

k)︸ ︷︷ ︸
measurement

model

(5.24)

A different choice for the proposal is p(xk|xi
k−1, zk). As is shown in [23],

this density minimizes the variance of the resulting weights conditioned on
x1:k−1 and z1:k. For a detailed proof of this statement, see Appendix A.3.4.
The distribution can be expanded as follows:

p(xk|xi
k−1, zk) =

p(xk, xi
k−1, zk)

p(xi
k−1, zk) (5.25)

=
p(zk|xk, xi

k−1)p(xk|xi
k−1)p(xi

k−1)
p(zk|xi

k−1)p(xi
k−1) (5.26)

=
p(zk|xk, xi

k−1)p(xk|xi
k−1)

p(zk|xi
k−1) (5.27)

Markov= p(zk|xk)p(xi
k|xk−1)

p(zk|xi
k−1) (5.28)

Substituting the last expression into (5.19), we obtain:
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wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)
p(zk|xi

k
)p(xi

k
|xi

k−1)
p(zk|xi

k−1)

(5.29)

= wi
k−1p(zk|xi

k−1) (5.30)

= wi
k−1

∫
p(zk|xk)p(xk|xi

k−1) dxk (5.31)

This distribution, albeit optimal in theory, is difficult to use in practise.
The reason is twofold. First, we need to be able to sample from the proposal
p(xk|xi

k−1, zk) and second, we need to compute the integral in (5.31), neither
of which is possible in general. However, as noted by [4], there are a few
special cases in which this can be done. One such case is when the the noise
is Gaussian and the measurement model is linear. The proposal is then also
a Gaussian which is easily sampled. In cases when the proposal cannot be
evaluated in a closed form, linearization techniques may be used to obtain a
reasonable approximation.

5.8 Comparison with EKF

To demonstrate the ability of a particle filter to represent arbitrary multimodal
distributions, we compare it with an Extended Kalman filter on a variant
of a standard one-dimensional benchmarking model [4, 28, 45, 14, 30]. The
state-space equations are

xk = xk−1 + cos(k) + qk (5.32)
zk = x2

k + rk, (5.33)

where qk and rk are the process and observation noise, respectively. The
noise is modeled as a zero-mean Gaussian with qk ∼ N (0, 10) and rk ∼ N (0, 1).
This model is of interest as it demonstrates the limitations of the EKF. The
combination of a large process noise and an ambiguous observation model
induced by x2

k produces a multimodal posterior which the EKF fundamentally
cannot represent. In such situations, the EKF either tracks the mean or
chooses one of the possibly incorrect modes as shown in Fig. 5.2.
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0 20 40 60 80 100

Ground truth Estimate

Figure 5.2: This figure shows a comparison of a particle filter (top) and an
Extended Kalman filter (bottom) on a simple non-linear stochastic model given
by (5.32). For each timestep, the particles making up the approximate posterior
are displayed as dots in the top graph. The color of a particle corresponds to
its weight – the lighter the color, the higher the weight of the particle. We can
see that the particles form two peaks around the two likely positions of the true
state. The EKF on the other hand can only represent a single mode and in this
case chooses the wrong one.
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Chapter 6

Simultaneous localization and mapping

The Simulatenous localization and mapping problem (SLAM) is one of the
most prominent and difficult problems in robotics [24, 6]. The SLAM prob-
lem can be described as follows. A mobile robot is placed in an unknown
environment of which it has no prior knowledge. The robot can move around
and perceive the environment using onboard sensors such as a LiDAR or
a camera. The goal of SLAM is for the robot to construct a virtual map
of the environment and simultaneously localize itself with respect to the
map. During the more than thirty-year history, SLAM went from a mere
theoretical formulation to many real applications in the industry. SLAM has
been successfully applied in a wide range of environments such as indoor and
outdoor, underwater, and airborne. In many settings, The SLAM problem
can now be claimed to be solved. However, due to the immense variety of
environments and robot-sensor combinations, many such combinations remain
challenging, e.g., fast robot dynamics, highly dynamic environments, or strict
performance requirements [13].

The SLAM problem combines in itself the problem of localization in a known
environment and the problem of mapping with a known path. However, in
SLAM neither the map nor the path is known apriori. The robot may measure
its odometry to calculate an approximate dead-reckoning pose. Due to the
inherent noise present in the motion, the odometry estimate will inevitably
drift over time. The difficulty of SLAM lies mostly in the dependence of an
accurate pose on the map quality and vice versa. To build an accurate map,
the robot needs to know its pose with a high degree of certainty. This is
because the robot measurements are relative to its pose. On the other hand,
to accurately estimate its pose, the robot needs to have an accurate map.
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6.1 SLAM taxonomy

The SLAM problem can be divided into many different types based on the
characteristics given by the environment, robot, and sensor configuration [93].
Here, we provide a non-exhaustive list of popular SLAM variants found in
the literature:

. Dense vs feature-based SLAM: Dense SLAM uses the raw output of the
sensors, e.g., LiDAR pointclouds, to construct a map, thus providing
a dense reconstruction of the environment. Feature-based SLAM, also
called landmark SLAM, first preproceses the raw sensor data and extracts
specific features, also called landmarks, which describe the environment.
These landmarks are typically larger and more complex objects in the
scene which can be detected, e.g., by means of a neural network. Taking
an example from Formula Student, the environment features are the
traffic cones delineating the track.

While computationally more demanding, incorporating the raw sensor in-
put tends to bring increased accuracy as all available data are considered.
In Formula Student, the advantage of dense SLAM is less pronounced
due to the environment. Formula Student tracks are typically built on
airport runways or large industrial car parks. Such environments are
very feature-sparse. Typically, the only visible features are the cones
themselves.. Known vs unknown correspondences: Some SLAM formulations assume
known correspondences between features observed at different time steps.
If the feature identity cannot be discerned from the features themselves,
the measurements need to be associated with the most likely correspon-
dences. This problem is called data association. Due to sensor noise
and spurious measurements, data association is a difficult problem on
its own. Moreover, incorrect data association can significantly degrade
the accuracy of SLAM..Online vs offline: Online SLAM computes only the most recent pose
estimate using the knowledge of the previous estimate. Online SLAM is
typically based on a recursive filter without the ability to refine estimates
made in the past. Offline SLAM on the other hand, computes the whole
robot path. This is more computationally demanding but produces better
estimates since the algorithm can consider all available information..GPS vs no GPS: In outdoor environments, GPS is typically available
to help guide the robot pose. In other environments, such as indoor or
underwater, where GPS is not available, the robot can only rely on the
sensor readings and the pose estimated by its motion model.
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. Static vs dynamic environment: Most SLAM formulations consider the
environment to be static, that is, the features are assumed not to move.
Formulations that reason about the environment dynamics are more
computationally demanding but tend to be more robust.. Active vs passive: in passive SLAM, the SLAM algorithm cannot control
the robot movement. This is useful in situations when a robot needs to
carry out other tasks unrelated to SLAM. On the other hand, in active
SLAM, the SLAM algorithm has control over the robot motion and can
actively choose to search areas that improve its map estimate.. Single-robot vs multi-robot: SLAM is typically formulated as a single-
robot problem, however, a lot of attention has recently been devoted to
multirobot cooperative SLAM [73, 81, 99, 54]. In this setting, multiple
robots move independently within the same environment. The robots
can communicate with each other and exchange information about the
environment. In some formulations, communication constraints such as
maximum distance may be imposed.

6.2 Loop closure

One important characteristic of SLAM is that the robot pose uncertainty
always increases unless the robot revisits a previously seen area. The act of
revisiting a known area is called loop closure. Loop closing is an important
aspect of SLAM which allows the robot to decrease its own pose uncertainty.
However, correctly detecting a loop closure is difficult when the robot is
returning back to a known area after a large loop as depicted in Fig 6.1. Due
to the accumulated error during the traversing of the loop, the robot may not
be able to close the loop correctly or close it at all. Loop closure, regardless
of its correctness, always decreases the robot uncertainty. As such, once a
loop closure is made, it is difficult to revise it later. In addition, failure to
close a loop introduces global inconsistencies in the map. Local consistency
in SLAM is comparatively simpler as the error in a small time interval grows
much slower. We note that loop closure is a concern only for the case of
unknown data association. If the data association is known, the robot uses
the landmark identities themselves to close the loops instead.

6.3 SLAM formulation

Based on the SLAM classification introduced previously, the rest of this
chapter focuses on the case of feature-based passive SLAM with known and
unknown correspondence in a static environment. This case is the most
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Estimated pose

True pose

Loop closure

Figure 6.1: This figure shows the problem of loop closure in SLAM. The true
robot path is shown in green, while the estimated path is shown in orange. When
a robot returns back to a known area after a long period of exploring, its map
may be distorted by the cummulative error it acrued along the way. If the
error is large enough, the robot may fail to close the loop leading to a global
inconsistency in the map.

relevant to the Formula Student competition. In this formulation, we consider
a discrete time given by time steps denoted as 0, 1, ..., k. The robot path is
then described as a sequence of individual poses at these time steps. Formally,
we have

x0:k = {x0, ..., xk}, (6.1)

where x0:k is the robot path from 0 to k and xk is an individual pose. To
further simplify the formulation, we assume without loss of generality that the
robot moves in a two-dimensional world. The robot pose is then characterized
by a 3-dimensional vector (x, y, θ) giving the position and orientation in the
plane. Furthermore, the robot has access to its odometry data. Odometry
provides information about the relative change between consecutive poses.
For example, in the case of a simple two-wheeled robot, the odometry can be
characterized as the forward and angular velocity (v, ω). For the purposes of
this formulation, we assume that the robot can measure its odometry either
by recording the control commands given to the motors or by using some
other proprioceptive sensors such as wheel encoders. The robot odometry is
denoted as

u1:k = {u1, ..., uk}, (6.2)
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where uk provides information about the change between poses xk−1 and
xk. Finally, the robot uses its sensors to observe the environment. In
landmark SLAM, the environment consists of individual landmarks that the
robot can detect:

m = {m1, ..., mM}, (6.3)

where mj is a single landmark. We assume that at every time step, the
robot makes a single measurement. Thus we have a sequence of measurements

z1:k = {z1, ..., zk}, (6.4)

where zk is a measurement at time k. This assumption serves only to
simplify the formulation and we show later how to work with multiple si-
multaneous measurements. To use a specific example of a landmark and a
measurement, we again use Formula Student as an example. The race track
is delineated by a set of traffic cones with every cone constituting a single
landmark. Considering a flat plane, a traffic cone is given by its position in
the plane, ignoring the color. A sensor detecting this cone reports the range
and bearing of the cone relative to the sensor.

With the above definitions of the robot path, odometry, map and mea-
surements, SLAM can be posed in a probabilistic setting as the problem of
estimating the posterior

p(x0:k, m|z1:k, u1:k). (6.5)

In other words, SLAM can be posed as a problem of estimating the joint
posterior over the robot path and the map given the measurements and the
odometry. For a visual representation of SLAM, see Fig. 6.2 and 6.3. To work
with this formulation further, we need the robot motion and measurement
models. These are analogous to the process and measurement models of
the Recursive Bayesian filter. The robot motion model is given by its exact
kinematics combined with an additive noise:

xk = g(xk−1, uk) + qk, (6.6)

where qk ∼ N (0, Qk) is a zero-mean Gaussian. This may again be rewritten
as
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... xk−1 xk xk+1 xk+2 ...

uk uk+1 uk+2 uk+3

zk−1 zk zk+1 zk+2

m1 m2 m3

Figure 6.2: A graphical representation of the SLAM problem as a dynamic
Bayes network (DBN). DBN is a generalization of HMMs which relates variables
from consecutive time steps. The network clearly shows the relationship between
the robot path (xk), odometry (uk), measurements (zk) and the landmarks
(mj).

xk ∼ p(x|xk−1, uk). (6.7)

Analogously, we have the measurement model:

zk = h(xk) + rk, (6.8)
zk ∼ p(z|xk), (6.9)

where rk ∼ N (0, Rk). In the literature, one can find three main SLAM
algorithms using the formulation given above. In the following sections, we
introduce them in chronological order, starting from the oldest and finishing
with the most recent algorithm. Finally, the last section of this chapter
describes the problem of data association in SLAM and several different
solution approaches to this problem.

6.4 EKF-SLAM

EKF-SLAM is the oldest SLAM algorithm that has been successfully used in
real applications such as in indoor and underwater environments, underground
exploration, and space exploration [3, 102, 37, 2, 42]. As the name suggests,
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Figure 6.3: A visualization of SLAM in two dimensions. The true path (green)
is shown alongside the path estimated by SLAM (orange). The robot ob-
serves landmarks in the environment (blue) to construct its own map estimate
(yellow).

EKF-SLAM is an extension of the previously described Extended Kalman
filter. In fact, EKF-SLAM can be viewed as an instance of an EKF, where the
estimated state is the robot pose combined with the map. Despite the initial
success of EKF-SLAM, it has been surpassed by more efficient and robust
algorithms such as FastSLAM [64, 63]. As we will see, the computational
complexity of EKF-SLAM makes it difficult to use for large-scale environments.
However, various techniques to reduce the complexity have been proposed
[74, 41]. The second limitation of EKF-SLAM relates to the robustness of
data association. Different data associations commonly lead to vastly different
maps. However, EKF-SLAM maintains only the most likely data association
hypothesis, which is insufficient when there are multiple plausible associations.
As such, incorrect data association can have a great negative effect on the
accuracy of EKF-SLAM.
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6.4.1 Formulation

The basic operation of EKF-SLAM is largely unchanged compared to a
standard EKF. The main difference between the two is that the state of
EKF-SLAM contains not only the robot pose, but all map landmarks as
well. The pose and landmarks form a single joint state and the algorithm
estimates the posterior over both. Before proceeding further, we make a
few simplifying assumptions. First, we assume that the size of the map,
M , is known apriori. This is not required, but simplifies the algorithm by
allowing us to initialize the state mean and covariance to the correct size at
the beginning. In addition, we assume that the data association is known.
Here, the data association is encoded as a mapping variable c which maps
measurements to their corresponding landmarks. That is, a measurement zk

maps to a landmark j = ck. Data association is a general problem in SLAM
and is explained separately in section 6.8.

Being an instance of an EKF, EKF-SLAM represents the posterior as a
Gaussian parametrized by its mean and covariance. The mean at time k is a
3 + 2M -dimensional vector

µk = (x, y, θ︸ ︷︷ ︸
pose

, m1,x, m1,y, ..., mM,x, mM,y︸ ︷︷ ︸
map

)T (6.10)

= (xk, mk,1, ..., mk,M )T (6.11)

= (xk, mk)T . (6.12)

In addition to the robot pose, the full state vector µk contains the landmark
positions. The covariance is then given in a straightforward fashion:

Σk =


Σxkxk

Σxkm1 . . . ΣxkmM

Σm1xk
Σm1m1 . . . Σm1mM

...
... . . . ...

ΣmM xk
ΣmM m1 . . . ΣmM mM

 (6.13)

=
(

Σxkxk
Σxkm

Σmxk
Σmm

)
. (6.14)

Note that the covariance matrix Σk is composed of four blocks. Σxkxk
is

the robot pose covariance. Σxkm and Σmxk
is the covariance between the

pose and landmark positions. Finally, Σmm is the map covariance.
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6.4.2 Initialization

In a standard EKF, we typically have an initial estimate to seed the filter
with. This is not required in SLAM, however. Since we are interested in the
robot path, the map, and how they relate to each other, we are free to define
the initial robot pose as the origin of the coordinate frame:

µ0 = (x, y, θ, m1,x, m1,y, ..., mM,x, mM,y)T (6.15)
= (0, 0, 0, 0, 0, ..., 0, 0)T . (6.16)

The initial estimate has the following covariance:

Σ0 =



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 ∞ . . . 0
...

...
...

... . . . ...

︸ ︷︷ ︸
3

0 0 0 ︸ ︷︷ ︸
2M

0 . . . ∞


. (6.17)

The initial pose was deliberately set, thus its uncertainty Σx0x0 is zero.
To distinguish landmarks which were not yet observed, we set the landmark
uncertainty to ∞. As this is the initial state, no landmarks were observed yet
and thus all of them start with an infinite uncertainty. Note that the infinite
uncertainty is just a mathematical convenience. In a real implementation, a
sufficiently large number would be used instead to avoid possible problems
with representing infities in programming languages.

6.4.3 Prediction step

The prediction step is analogous to EKF. First, we compute the new state
prediction:

µ̂k = g(µk−1, uk), (6.18)

where g(.) is the motion model and would normally return a new robot
pose (x, y, θ). However, the state also contains the map and so to use the
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same EKF equations, the motion model needs to be modified to agree in
dimensions with the state vector:

µ̂k = g(µk−1, uk) (6.19)

=
(

gx(µk−1, uk)
mk−1

)
. (6.20)

Here, gx(µk−1, uk) ∈ R3 is the standard motion model and mk−1 is the
previous map belief. In other words, the g function is simply extended from
R3 to R3+2M such that it has the same dimension as the state vector. Note
that the motion model simply copies the old map without modifying it. To
compute the covariance, we first need to compute the Jacobian of the motion
model evaluated at the previous estimate. This procedure is the same as in
EKF. The Jacobian of g is

Gk = ∂g(µk−1, uk)
∂µk−1

=
(

Gx 0
0 I

)
, (6.21)

where Gx ∈ R3×3 is a Jacobian of gx i.e. the Jacobian of the standard
motion model, and I ∈ R2M×2M is an identity matrix. The covariance update
can then be written as

Σ̂k = GkΣk−1GT
k + Qk (6.22)

=
(

Gx 0
0 I

)(
Σxkxk

Σxkm

Σmxk
Σmm

)(
GT

x 0
0 I

)
+ Qk (6.23)

=
(

GxΣxkxk
GT

x GxΣxkm

(GxΣxkm)T Σmm

)
+ Qk. (6.24)

The process noise Qk needs to be extended so that it matches the dimensions
of the full covariance:

Qk =
(

Qx 0
0 0

)
. (6.25)

In the above, Qx is the original motion model noise. The rest of the entries
of the matrix are zero since the process noise only affects the robot pose.
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Notice that the covariance update leaves the landmark uncertainties intact.
Only the robot pose and the pose-landmark covariance is updated. This is
because the landmark estimates depend on the the pose estimate and thus any
uncertainty in the pose will propagate into the landmarks. Because of this,
the asymptotic complexity of the prediction step is O(M) where M is the
number of landmarks. This completes the prediction step of the EKF-SLAM
algorithm. The only major difference compared to the EKF is that the state
vector is augmented with the map estimate and the motion model g and noise
Qk are extended to match the dimensions of the new state.

6.4.4 Correction step

Assuming the data association between measurements and landmarks is
known, the update step is again analogous to the standard EKF update rule.
If the association was unknown, an extra data association step would have to
be performed before the correction. If we recall the EKF update equations

yk = zk − hk (µ̂k) , (6.26)
Sk = HkΣ̂kHT

k + Rk, (6.27)
Kk = Σ̂kHT

k S−1
k , (6.28)

µk = µ̂k + Kkyk, (6.29)
Σk = (I −KkHk) Σ̂k, (6.30)

it is evident that the only unknown quantity we need to compute is the
measurement Jacobian Hk. All other quantities are either already computed
from the prediction step (µ̂k, Σ̂k) or are supplied by the user (zk, Rk). Here
we assume that the robot observes one measurement at a time. Later we
show how to adapt EKF-SLAM to incorporate simultaneous measurements.
The measurement Jacobian is defined as

Hk = ∂h(µk)
∂µk

. (6.31)

Assuming the measurement function h provides a two-dimensional measure-
ment, e.g., a range and bearing measurement (r, φ), the resulting Jacobian
has dimensions Hk ∈ R2×3+2M . In addition, the resulting matrix is sparse
as the only nonzero elements will be ∂h(µk)

∂xk
and ∂h(µk)

∂mk,j
, where mk,j is the

landmark corresponding to zk = h(µk):
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Hk = ∂h(µk)
∂µk

=
(

∂h
∂xk

0 . . . ∂h
∂mk,j

. . . 0
)

. (6.32)

Now that we have the Jacobian Hk, the next step is to simply follow the
EKF update equations as one would in a normal EKF. The correction step
needs to update the whole estimate covariance leading to a time complexity
of O(M2). Finally, a distinction has to be made as to whether the given
measurement corresponds to a landmark that has been seen before. If the
landmark has been seen before, the standard EKF update described above
applies. If it is a new landmark, its position needs to be initialized before the
correction step is carried out as follows:

mk,j = h−1(µ̂k, zk). (6.33)

The function h−1(.) returns the position of the landmark in the global
coordinate frame given the robot pose and the measurement. With this,
we have covered the whole EKF-SLAM algorithm. The full pseudocode is
provided in Algorithm 6.

6.4.5 Multiple measurements

The above formulation of EKF-SLAM needs to be extended to the case when
the robot perceives multiple simultaneous measurements. A naive way to do
this is to execute the correction step for every measurement. However, due
to the quadratic time complexity, this may be costly. There is an alternative
way to incorporate all measurements in a single step. We can think of the
individual measurements zk,1, ..., zk,n as a single measurement

z∗
k =

 zk,1
...

zk,n

 . (6.34)

This combined measurement has the corresponding uncertainty:

R∗ =

 R
. . .

R

 . (6.35)

Finally, the Jacobian is just the stacked Jacobians of the individual mea-
surements:
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Algorithm 6: EKF-SLAM
input : Previous estimate µk−1, Σk−1

Measurement zk

Control input uk

Data association ck

Process and measurement noise Qk, Rk

output : A new estimate µk, Σk

1
2 // prediction
3 µ̂k = g(µk−1, uk)
4 Σ̂k = GkΣk−1GT

k + Qk

5
6 // correction
7 j = ck

8 if landmark never seen before then
9 // initialize landmark

10 mk,j = h−1(µk−1, zk)
11 end
12
13 yk = zk − h(zk)
14 Sk = HkΣ̂kHT

k + Rk

15 Kk = Σ̂kHT
k S−1

k

16 µk = µ̂k + Kkyk

17 Σk = (I −KkHk)Σ̂k

H∗
k =


∂h1(µk)

∂µk...
∂hn(µk)

∂µk

 =

 Hk,1
...

Hk,n

 . (6.36)

With these modifications, it is sufficient to carry out only a single EKF
update as opposed to updating the state for every measurement separately.

6.4.6 Final remarks

Albeit conceptually simple, EKF-SLAM performs well in real applications.
Unfortunately, its simplicity is outweighed by several underisable properties.
The most prohibitive is its high computational complexity. The algorithm
requires O(M2) memory and O(M2) time per step since the algorithm stores
the full covariance matrix and the whole matrix needs to be updated in
every step. This prevents EKF-SLAM from being efficiently used in large-
scale environments as the computational complexity grows quadratically
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with the map size. Furthermore, an issue shared with EKF is the Gaussian
assumption. Due to this, EKF-SLAM struggles with highly nonlinear motion
and measurement models where the linearization is less precise. Finally,
EKF-SLAM is very sensitive to errors in data association. Since it can only
represent a single data association hypothesis, any error in the correspondence
can lead to filter divergence in the future as there is no mechanism to undo
or refine previous associations.

6.5 FastSLAM

The FastSLAM algorithm [64, 63] fixes many of the aforementioned issues
present in EKF-SLAM. Most notably, the time complexity of FastSLAM is
significantly reduced compared to EKF-SLAM. Moreover, FastSLAM can
more easily handle nonlinear process models and is more resilient to data
association errors. FastSLAM achieves this by factorizing the SLAM posterior
(6.5) which allows it to use a combination of particle filters and EKFs. Thanks
to this factorization, the computational complexity is reduced to O(M) in a
simple implementation and O(log M) by using optimal tree data structures.
Moreover, since FastSLAM uses a particle filter to track the robot pose,
nonlinear motion models are handled more easily. Recall that EKF-SLAM
first needs to linearize the motion model using the Taylor expansion. Finally,
since data association is carried out on a per-particle basis, FastSLAM is
much more robust to incorrect data association.

In the literature, one can find two variants of the FastSLAM algorithm –
FastSLAM 1.0 [64] and FastSLAM 2.0 [63]. FastSLAM 2.0 is a newer and
much improved version of the original FastSLAM 1.0. Since the two algorithms
are conceptually very similar, we first explain the original algorithm in full
and then explain the differences introduced in FastSLAM 2.0. As a final note,
for the sake of brevity, when we refer to FastSLAM, we mean FastSLAM 1.0
unless otherwise specified.

6.5.1 Factoring the posterior

A key property of the SLAM posterior exploited by FastSLAM is that the
landmark locations are conditionally independent given the robot pose. If we
view the SLAM problem as a dynamic Bayes network as shown in Fig. 6.2,
the structure of network makes the landmarks d-separated by the robot path.
D-separation is a property of a Bayesian network which is defined on a pair
of nodes. It can be shown that if a pair of nodes is d-separated, the nodes
are conditionally independent. This property allows us to factor the SLAM
posterior in the following way:
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p(x0:k, m|z1:k, u1:k) = p(x0:k|z1:k, u1:k)p(m|x0:k, z1:k, u1:k) (6.37)

= p(x0:k|z1:k, u1:k)p(m|x0:k, z1:k) (6.38)

= p(x0:k|z1:k, u1:k)︸ ︷︷ ︸
pose posterior

M∏
j=1

p(mj |x0:k, z1:k)︸ ︷︷ ︸
landmark posterior

. (6.39)

In the last equation, we used the conditional independence to rewrite the
map posterior as a product over landmark posteriors. Indeed, the key insight
behind fastSLAM is the fact that the SLAM posterior can be factored into a
pose posterior and separate landmark posteriors. This factorization tells us
that we can estimate the robot pose and landmark positions independently.
Specifically, FastSLAM uses a particle filter to estimate the robot pose.
Each particle in turn contains independent Extended Kalman filters to track
individual landmark locations. Thanks to this factorization, both the particle
filter and the EKFs are low-dimensional. Assuming a two-dimensional world,
the particle filter estimates the robot pose (x, y, θ) while the EKFs track the
two-dimensional landmark positions. From this, it is immediately evident
that unlike in EKF-SLAM, incorporating a new measurement in FastSLAM
is Θ(1). This is because the landmark filter has a constant size (2× 2) with
respect to the map.

The basic FastSLAM algorithm is almost identical to that of a particle filter
described in Algorithm 5. First, robot poses are sampled from a proposal
distribution. Then, the measurements are incorporated into the map. This
is done by updating the corresponding EKFs for each landmark using the
measurement model. Third, the importance weights are computed and
finally, the particles are resampled. The only fundamental difference between
FastSLAM and a standard particle filter is the need to update the map with
the measurements. However, the landmark update itself is a standard EKF
update. In summary, FastSLAM combines two standard filtering algorithms
in a clever way, which increases the robustness of the algorithm and decreases
its computational complexity. For a graphical representation of FastSLAM
particles, see Fig. 6.4. For notational convenience, we will drop the particle
index xi used for variables belonging to particular particles in situations
where the context permits it.
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Figure 6.4: The FastSLAM algorithm represents the posterior as separate
particles each containing its own map estimate. Because of this, data association
is performed on a per-particle basis leading to a more robust behavior. Here is
an example with three particles showing the robot pose (green) and its estimate
(orange) together with the landmarks (blue) and their estimates (yellow) with
uncertainties shown as red ellipses.
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6.5.2 Posterior representation

FastSLAM represents the posterior as a weighted sum of particles with the
following structure:

( xk︸︷︷︸
robot pose

, µk,1, Σk,1, ..., µk,j , Σk,j︸ ︷︷ ︸
landmark mean
and covariance

, ..., µk,M , Σk,M ). (6.40)

The particle contains the robot pose xk = (x, y, θ) and the mean and
covariance of every observed landmark. FastSLAM is initialized similarly to
EKF-SLAM. If there are no constraints on the coordinate system, the initial
set of particles is created with the robot pose set at the origin. The particles
start with an empty map and new landmarks are added to the particles when
they are first observed by the robot. These steps are explained in more detail
in the following sections.

6.5.3 Prediction step

In the prediction step, new robot poses are sampled from the proposal
distribution. As we have discussed in chapter 5, there are many choices for
a suitable proposal distribution. In particular, FastSLAM 1.0 samples new
poses from the motion model. This is a reasonable choice as the motion
model is typically well-behaved and easy to sample from. As we show later,
a more sophisticated choice of the proposal is possible, which is exploited
by FastSLAM 2.0. Mathematically, new poses are sampled in the following
manner:

xi
k ∼ p(xk|xi

k−1, uk). (6.41)

The actual mechanism of sampling new robot poses from the motion model
is fairly straightforward. Assuming the motion model is given by (6.6), where
qk ∼ N (0, Qk), we first sample qk from the normal distribution. A new pose
is then computed as the sum of the deterministic motion model g(xi

k−1, uk)
and the sampled noise qk.

6.5.4 Correction step

The correction step of the FastSLAM algorithm consists of two parts – the
map update and the weight update. For simplicity, we assume that the robot
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receives only a single measurement at a given time. In addition, we assume
that the data association is known apriori. Later we will show how to remove
both of these assumptions just as we did with EKF-SLAM.

Map update

FastSLAM represents the map using M independent Extended Kalman filters.
Each EKF tracks a single landmark. Every particle maintains its own map
relative to its estimated robot path. The implementation of the EKF is
straightforward. Since the landmarks are assumed to be stationary, there is
no prediction step. The EKF correction step is in principle similar to the
landmark update in EKF-SLAM. To update a landmark mj , we need to
distinguish three cases:..1. Landmark mj was not observed in the current time step k. In this case,

the landmark estimate remains unchanged. The update rule is then
simple:

µk,j = µk−1,j (6.42)
Σk,j = Σk−1,j . (6.43)..2. Landmark mj was observed for the first time. In this case, the new

landmark is initialized using

µk,j = h−1(xk, zk) (6.44)
Σk,j = (HkR−1

k HT
k )−1, (6.45)

where zk is the measurement, h−1(.) is the inverse of the measurement
model and Hk is the Jacobian of the measurement model analogous to
EKF-SLAM...3. Landmark mj was reobserved. In the third and final case, we proceed
with a standard EKF update, linearizing the measurement model if
necessary:

Sk = HkΣk−1,jHT
k + Rk, (6.46)

Kk = Σk−1,jHT
k S−1

k , (6.47)
µk,j = µk−1,j + Kk(zk − ẑk), (6.48)
Σk,j = (I −KkHk)Σk−1,j . (6.49)

Unlike in EKF-SLAM, incorporating a measurement is a constant time
operation as it requires updating a single 2× 2 EKF whereas in EKF-SLAM,
the whole state covariance needs to be updated.
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Weight update

The second part of the correction step is to compute the importance weights
of the particles. Recall the weight update from chapter 5:

wi
k ∝

p(xi
0:k|z1:k)

q(xi
0:k|z1:k) = target

proposal . (6.50)

To derive the weight update, we will again consider the full path posterior
p(xi

0:k|z1:k, u1:k). This path posterior is the target distribution. Since the new
poses are sampled from p(xk|xi

k−1, uk), the robot paths after the prediction
step are distributed according to

p(xi
0:k|z1:k−1, u1:k) = p(xi

k|xi
k−1, uk)︸ ︷︷ ︸

motion model

p(xi
0:k−1|z1:k−1, u1:k−1)︸ ︷︷ ︸

previous path posterior

(6.51)

Substituting this into (6.50), we obtain

wi
k ∝ p(xi

0:k|z1:k, u1:k)
p(xi

0:k|z1:k−1, u1:k) (6.52)

Bayes∝ p(zk|xi
0:k, z1:k−1, u1:k)p(xi

0:k|z1:k−1, uk)
p(xi

0:k|z1:k−1, u1:k) (6.53)

= p(zk|xi
0:k, z1:k−1)p(xi

0:k|z1:k−1, uk)
p(xi

k|z1:k−1, uk) (6.54)

= p(zk|xi
0:k, z1:k−1) (6.55)

=
∫

p(zk|mj , xi
0:k, z1:k−1)p(mj |xi

0:k, z1:k−1)dmj (6.56)

=
∫

p(zk|mj , xi
k)︸ ︷︷ ︸

measurement model

p(mj |xi
0:k−1, z1:k−1)︸ ︷︷ ︸

landmark estimate
at k − 1

dmj . (6.57)

The last integral is reminiscent of the EKF update rule. Indeed, it is the
probability of observing zk given the landmark estimate from the previous
time step. Specifically, the weight is computed as

wi
k ∝ N (zk; ẑk, Si

k) (6.58)

= 1√
|2πSi

k|
exp{−1

2(zk − ẑk)T (Si
k)−1(zk − ẑk)}, (6.59)
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where (zk − ẑk) is the measurement residual and Sk = HkΣk−1,jHT

k is the
standard EKF residual covariance. The new weight is thus proportional to
the likelihood that the robot observed zk given our previous belief of the
landmark position estimated by the EKF.

6.5.5 Resampling

FastSLAM estimates the robot pose using a particle filter and as such,
resampling is needed to prevent sample degeneracy. Resampling in FastSLAM
is analogous to resampling in a standard particle filter. The difference is
that since the whole particle is resampled, not only the path hypotheses but
also map hypotheses are deleted in the resampling step. This leads to the
depletion of historical data of the map which effects the overall map statistics
[8].

6.5.6 Multiple measurements

The FastSLAM algorithm is easily adapted to take into account multiple
simultaneous measurements. Consider that at time k, the robot observes
measurements {zk,1, ..., zk,n}. Provided the data association is known, the cor-
responding landmark EKFs are updated sequentially. The importance weight
is then a product of the partial weights computed from each observation:

wi
k =

n∏
j=1

wi
k,j (6.60)

=
n∏

j=1
N (zk,j , ẑk,j , Si

k). (6.61)

6.5.7 Landmark elimination

Due to imperfect sensors, spurious measurements may be introduced into the
map. Depending on the frequency of false positives, this may be problematic as
other than resampling away unlikely particles, FastSLAM has no mechanism
to prune incorrect landmarks from the map. In [64], a method to track the
probability of existence of every landmark is proposed. Observing a landmark
provides evidence for existence, while not observing a landmark despite it
being in the sensor range, provides evidence for nonexistence. When the
landmark probability drops below a certain threshold, the landmark is deleted.

60



......................................6.5. FastSLAM

Let ej ∈ {0, 1} be a binary variable indicating the existence of landmark mj .
The probability of existence

p(ej |x0:k, z1:k) (6.62)

is tracked using a static binary Bayesian filter. The binary Bayesian filter
is another special case of the recursive Bayesian filter. The filter equation is
commonly represented in its log-odds form [90]. Skipping over the derivation
which is obtained from the general recursive filter, we obtain:

`(ej |x0:1, z1:k) = `(ej |xk, zk) + `(ej |x0:k−1, z1:k−1) + `(ej), (6.63)

where `(x) is the log odds ratio:

`(x) = ln p(x)
1− p(x) . (6.64)

Assuming a uniform prior, the update amounts to adding

`(ej |xk, zk) = ln p(ej |xk, zk)
1− (ej |xk, zk) , (6.65)

whenever the landmark is in the perceptual range of the sensor. The
landmark is deleted when the log-odds value drops below a chosen threshold.
Note that this method relies on the knowledge of the reliability and the
perceptual range of the sensor and the overall geometry of the environment
to accurately compute p(ej |xk, zk). In an environment with a lot of spurious
observations, one may want to set the probability lower to eliminate the false
positives faster. On the other hand, in an environment with a large number
of occlusions, one needs to be more conservative as not observing a landmark
does not carry as much evidence for nonexistence. To give a real example, in
the Formula Student competition, LiDAR is a very popular sensor among
the teams. This type of sensor works best when mounted just above ground
since the traffic cones are fairly short. In this setting, it is common that cones
close to the car occlude cones farther away. Thus, not observing a given cone
does not necessarily provide evidence for its nonexistence.
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6.5.8 Final notes

This description constitutes the entirety of the FastSLAM 1.0 algorithm. We
would like to remark that despite the fact that the full path posterior was
used in the derivation of the importance weights, the result only depends on
the current robot pose. This means that it is not necessary to remember the
full robot path and hence the memory requirements are bounded. The full
pseudocode of FastSLAM 1.0 is given in Algorithm 7. FastSLAM alleviates
many problems present in the EKF-SLAM algorithm. Most importantly, the
time complexity is reduced from O(M2) to O(M) in a naive implementa-
tion and up to O(log M) by using optimal data structures [64]. Moreover,
FastSLAM can more easily handle nonlinear motion models since the path
posterior is approximated using a particle filter instead of an EKF.

6.6 FastSLAM 2.0

A common problem that can noticably reduce the accuracy of FastSLAM
1.0 is when the motion model contains a lot of noise relative to the sensors.
If that is the case, the prediction step will propagate most particles into
areas where they will be subsequently assigned low weights in the correction
step. Thus, most particles will be eliminated in the resampling step, lowering
the diversity and wasting computational effort on particles that are likely
to be discarded. The reason for this is that in FastSLAM 1.0, particles are
sampled from the motion model which disregards information about the
current measurement. If the motion model disagrees with the observations,
more particles are needed to cover areas were the motion model likelihood
is low, but the measurement likelihood is high. This model mismatch leads
to excessive resampling. We have shown in chapter 5 that resampling may
introduce sample impoverishment. This means that after a certain point in
the past, all particles will share a common history. For FastSLAM, this is
problematic as particles also contain map estimates. Due to this, FastSLAM
cannot revise its map estimate beyond the point at which all particle histories
are shared.

To remedy this, FastSLAM 2.0 [63] instead samples new poses from a
distribution conditioned on the previous pose together with the current mea-
surement. Since the sampled poses are in agreement with the measurements,
most particles contribute meaningfully to the estimate and sample degeneracy
is reduced. Thus, FastSLAM 2.0 typically requires significantly fewer particles
to achieve the same level of accuracy compared to FastSLAM 1.0. Moreover,
unlike FatSLAM 1.0, FastSLAM 2.0 has been shown to converge with just a
single particle in the linear Gaussian case. This is remarkable as FastSLAM
1.0 does not converge regardless of the number of particles due to the fact that
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Algorithm 7: FastSLAM 1.0
input : Particles x1

k−1, . . . , xN
k−1

Measurement zk

Control input uk

Data association ck

Process and measurement noise Rk, Qk

output : New particles x1
k, . . . , xN

k

1
2 // prediction
3 for i← 1 to N do
4 xi

k ∼ p(xk|xi
k−1, uk)

5 end
6
7 j = ck

8 for i← 1 to N do
9 if landmark never seen before then

10 // initialize landmark
11 µk,j = h−1(xi

k, zk)
12 Σk,j = (HkR−1

k HT
k )−1

13 else
14 // update landmark
15 Sk = HkΣk−1,jHT

k + Rk

16 Kk = Σk−1,jHT
k S−1

k

17 µk,j = µk−1,j + Kk(zk − ẑk)
18 Σk,j = (I −KkHk)Σk−1,j

19 end
20 wi

k = N (zk, ẑk, Sk)
21 end
22
23 if Neff below threshold then
24 Resample xi

k

25 end
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in FastSLAM 1.0, there is no way to change the trajectory of the particles
after they are sampled from the motion model. In FastSLAM 2.0, by sampling
from the modified proposal, the particle trajectory is corrected to agree with
the observations.

6.6.1 Proposal distribution

The only fundamental difference between the FastSLAM 1.0 and 2.0 is the
different proposal distribution. In FastSLAM 1.0, the poses are sampled from
the motion model:

xi
k ∼ p(xk|xi

k−1, uk). (6.66)

In contrast, FastSLAM 2.0 samples poses from

xi
k ∼ p(xk|xi

0:k−1, u1:k, z1:k). (6.67)

In the above, we condition the new pose on the most recent measurement
zk in addition to the control uk. The above probability can be expanded
using Bayes rule together with the Markov property:

p(xk|xi
0:k−1, u1:k, z1:k) Bayes= ηp(zk|xk, xi

0:k−1, u1:k, z1:k−1) (6.68)
p(xk|xi

0:k−1, u1:k, z1:k−1)

= η p(zk|xk, xi
0:k−1, u1:k, z1:k−1)︸ ︷︷ ︸
likelihood

p(xk|xi
k−1, uk)︸ ︷︷ ︸

prior

.

(6.69)

Here, η is a normalizing constant. In (6.69), the robot pose in the second
term is conditionally independent of zk−1 and xi

0:k−2 given xi
k−1. Thus the

second term simplifies to the motion model. Using the law of total probability,
we can insert the corresponding landmark mj into the expression:
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= η

∫
p(zk|mj , xk, xi

0:k−1, u1:k, z1:k−1)p(mj |xk,xi
0:k−1, u1:k, z1:k−1)dmj

p(xk|xi
k−1, uk) (6.70)

= η

∫
p(zk|mj , xk)︸ ︷︷ ︸

Measurement model

p(mj |xi
0:k−1, z1:k−1, u1:k−1)︸ ︷︷ ︸
Landmark prior

dmj

p(xk|xi
k−1, uk). (6.71)

This expression cannot be evaluated exactly due to the nonlinearity of the
measurement model. However, a closed form result can be obtained using a
linear approximation. Here, we skip the derivation and only show the final
result. We invite the reader to consult the full derivation in [62]. Using a
linear approximation, the above expression simplifies to a Gaussian with the
following parameters:

Σx =
(
HT

x S−1Hx + Q−1
k

)−1
(6.72)

µx = ΣxHT
x S−1(zk − ẑk) + x̂k. (6.73)

Here, the matrix S is again the innovation covariance defined as S =
HmΣk−1,mHT

mRk. Hx and Hm are the Jacobians of the measurement model
with respect to the pose and landmark position, respectively. One can think
of this new distribution as a single EKF update of the predicted robot pose.
The particle is first projected using the motion model and then subsequently
corrected using the estimated position of the corresponding landmark.

Since the proposal distribution has changed, the importance weight needs
to also be rederived. We again skip the derivation and provide only the
result. The details can again be found in [62]. The new importance weight is
computed using the following Gaussian:

wi
k = N (zk; ẑk, HxQkHT

x + HmΣk−1,jHT
m + Rk). (6.74)

In summary, the only difference between FastSLAM 1.0 and 2.0 is the
different proposal distribution which takes into account not only the motion
but also the measurements. This modified proposal requires to also derive a
new formula for the importance weights. The pseudocode of FastSLAM 2.0
is provided in Algorithm 8.
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Algorithm 8: FastSLAM 2.0
input : Particles x1

k−1, . . . , xN
k−1

Measurement zk

Control input uk

Data association ck

Process and measurement noise Rk, Qk

output : New particles x1
k, . . . , xN

k

1
2 for i← 1 to N do
3 xi

k = g(xi
k−1, uk)

4 end
5
6 j = ck

7 for i← 1 to N do
8 if landmark never seen before then
9 // initialize landmark

10 µk,j = h−1(xi
k, zk)

11 Σk,j = (HkR−1
k HT

k )−1

12 // sample pose
13 xi

k ∼ p(xk|xi
k−1, uk)

14 else
15 Sk = HkΣk−1,jHT

k + Rk

16 // update position
17 Σx =

(
HT

x S−1Hx + Q−1
k

)−1

18 µx = ΣxHT
x S−1

k (zk − ẑk) + x̂k

19 // update landmark
20 Kk = Σk−1,jHT

k S−1
k

21 µk,j = µk−1,j + Kk(zk − ẑk)
22 Σk,j = (I −KkHk)Σk−1,j

23 // sample pose
24 xi

k ∼ N (µx, Σx)
25 end
26 wi

k = N (zk; ẑk, HxQkHT
x + HmΣk−1,jHT

m + Rk)
27 end
28
29 if Neff below threshold then
30 Resample xi

k

31 end
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6.6.2 Multiple measurements

Handling multiple measurements in FastSLAM 2.0 is more complicated
compared to FastSLAM 1.0. This is due to the different proposal distribution
which incorporates the measurements as well. We stated before that one can
think of the new proposal as a single EKF update to the pose proposed by
the motion model. With multiple measurements, the procedure is the same,
however, it is carried out iteratively. Every measurement is used one by one
to refine the final proposal distribution. First, the initial pose is sampled
from the motion model. Then, for every measurement, the corrected proposal
is computed using the equations below:

Σxk,0 = Qk (6.75)
µxk,0 = g(xk−1, uk) (6.76)

Σxk,n =
(
HT

x,nS−1Hx,n + Σ−1
xk,n−1

)−1
(6.77)

µxk,n = µxk,n−1 + Σxk,nHT
x,nS−1(zk − ẑk,n). (6.78)

.

These equations are essentially the EKF update equations. We sample
a new pose from this new proposal, update the corresponding landmark
filter using this pose, and compute the importance weight. The procedure
is then repeated for the next measurement using the same equations given
above. Once all measurements are processed, we use the proposal distribution
to sample the final pose. This procedure indeed mirrors a standard EKF
incorporating several measurements. As we introduce more measurements,
the variance of the proposal will decrease and the proposal distribution will
concentrate in areas which are in agreement with the measurements.

6.6.3 Extracting the map

In many applications, including the Formula Student competition, SLAM is
only one part of a larger navigation system. Often times, other parts of the
system, such as path planning, depend on the output of SLAM. It is therefore
necessary to regularly extract the estimated position and the map from the
algorithm. In EKF-SLAM, this step is rather straightforward. The algorithm
maintains a single map estimate which is simple to obtain by taking the
corresponding part of the state vector. In FastSLAM, however, every particle
carries its own map estimate. One may then ask how to extract a single map
from FastSLAM that most likely represents the environment. Taking a simple
weighted average of the landmark positions across all landmarks is in general
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Figure 6.5: A graphical visualization of the problem of computing the final
map in FastSLAM. Commonly, due to the noise in both the motion and sensors,
particles can containt vastly different maps. Here we see one such example,
where one particle believes the map contains 3 landmarks and the other 4.

not possible for several reasons. First, every particle can carry a different
number of landmarks. Furthermore, the landmark correspondences between
particles are not known. Consider, for example, the case with two particles
x1 and x2. Suppose that particle x1 carries 3 landmarks in its map and
particle x2 carries 4. We need to decide whether the map estimate should
contain 3 or 4 particles and compute the correspondences between the two
maps. For a visual representation of this situation, see Fig. 6.5. Since this
is intractable for a large number of particles, heuristic algorithms are used.
Common heuristic approaches are based on maximum likelihood, K-means,
and Gaussian mixture models. As this problem is not directly related to
SLAM, a description of these methods may be found in Appendix A.4.1.
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Figure 6.6: As the robot explores the environment, different kinds of constraints
may be added to the graph. Using odometry, the relative transformation between
successive poses may be constrained (orange). By recognizing previously seen
areas, the robot may constrain poses which are separated by a long time interval
(black). Finally, using sensor measuremts the robot constrains the relative
position between the current pose and a ladmark (blue).

6.7 Graph SLAM

So far, we have discussed two formulations using which the SLAM problem
may be solved – EKF-SLAM and FastSLAM. Both of these approaches are
an example of online SLAM. That is, they both derive from recursive filtering
and estimate only the current posterior without the ability to refine previous
estimates. Graph SLAM on the other hand, is an example of offline SLAM.
The basic idea behind Graph SLAM is to represent the problem as a graph
induced by the robot motion and sensor measurements. This idea is rather
natural. Indeed, we have seen that the SLAM problem can be modeled as a
Dynamic Bayes Network introducing dependencies between the robot path,
map, odometry, and sensor measurements. Graph SLAM was introduced
in [57]. However, due to the lack of efficient algorithms, Graph SLAM only
gained widespread popularity in the last decade.

Using the odometry information and sensor measurements, Graph SLAM
constructs a constraint graph where every node represents an unknown and
every edge represents a constraint between a pair of unknowns. In Feature-
based SLAM, the unknowns are the robot poses and the landmarks. There
are two kinds of constraints in the graph. The first kind constraints the
relative transformation between a pair of robot poses. These can be added
either through the knowledge of the robot odometry or through recognizing
previously seen areas which adds loop closure constraints. The second kind
of constraint is that between a pose and a landmark. This edge is generated
by a sensor measurement which constraints the relative position of the robot
and the observed landmark. These situations are depicted in Fig. 6.6.
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We now wish to find a configuration of the poses and landmarks that

satisfy these constraints. However, due to the noise present in the sensors
and the motion, some constraints may be conflicting. This means that
the problem cannot be solved exactly. Instead, we consider the constraints
as soft. Let us define zij as the measurement between two nodes in the
constraint graph. If the corresponding constraint is between a pose and
a landmark, zij is the landmark measurement provided by the sensor. If
the constraint is between two poses, zij is then the relative transformation
between the two poses computed from the odometry. This is also called
a virtual meaurement. We assume that these measurements are normally
distributed with uncertainty given by the information matrix Ωij . Let also
ẑij be the predicted measurement. The log-likelihood of a constraint is then:

Lij ∝ (zij − ẑij)T Ωij(zij − ẑij) (6.79)
= eT

ijΩijeij , (6.80)

where eij = (zij − ẑij). Graph SLAM uses the maximum likelihood
principle to find the most likely configuration that minimizes the negative
log-likelihood of the whole graph:

F (x) =
∑
i,j

eT
ijΩijeij (6.81)

=
∑
i,j

Fij(x). (6.82)

Here, x is the state vector. The most likely state is computed as

x∗ = arg min
x

F (x). (6.83)

This problem can be solved using nonlinear least-squares minimization by
iteratively linearizing the error function. Using a first-order Taylor expansion
around x, the error is approximated as

eij(x + ∆x) ' eij + Jij∆x, (6.84)

where Jij is the Jacobian of eij evaluated at x. Substituting 6.81 into 6.84,
we get
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Fij(x + ∆x) = eij(x + ∆x)T Ωijeij(x + ∆x) (6.85)
' (eij + Jij∆x)T Ωij(eij + Jij∆x) (6.86)
= eT

ijΩeij︸ ︷︷ ︸
cij

+2 eT
ijΩijJij︸ ︷︷ ︸

bij

∆x + ∆xT JT
ijΩijJij︸ ︷︷ ︸

Hij

∆x (6.87)

= cij + 2bij∆x + ∆xT Hij∆x. (6.88)

Note that Fij(x+∆x) is a quadratic form in ∆x. This means that F (x+∆x)
is also a quadratic form:

F (x + ∆x) =
∑
i,j

Fij(x) (6.89)

=
∑
i,j

cij + 2bij∆x + ∆xT Hij∆x (6.90)

= c + 2bT ∆x + ∆xT H∆x. (6.91)

In the last equation, c = ∑
i,j cij , b = ∑

i,j bij and H = ∑
i,j Hij . The

minimum of the last expression is found by setting its derivative to zero
yielding a system of linear equations:

H∆x∗ = −b. (6.92)

In order to minimize the negative log-likelihood of the graph, this lin-
earization is solved iteratively until a convergence ciretorion is satisfied. To
solve this system efficiently, we may take advantage of the fact that the
matrix H is sparse. This is due to the structure of the constraints. Because
each constraint only affects two nodes in the graph, the Jacobian of the
corresponding error function is zero everywhere except for the two affected
nodes. This allows us to compute x∗ using sparse solvers using e.g., the sparse
Cholesky decomposition of H. The pseudocode of Graph SLAM is provided
in Algorithm 9. Note that in this state, the linear system in 6.92 is under
determined. This is because the graph contains only relative constraints
which connects nodes in the graph. Thus, the error F (x) is invariant under
rigid transformations applied to x. This is solved by fixing the coordinates of
one of the nodes in the graph.

In the above description of Graph SLAM, we discussed mainly how to
optimize the constraint graph without going into detail how to construct it in
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the first place. In the context of graph SLAM, graph construction is usually
called the frontend, while graph optimization is called the backend. The
backend works with abstract representations of the underlying sensors, which
is formalized as a straightforward optimization problem. The frontend part
is responsible for processing the sensor data and constructing the constraint
graph, which is passed to the backend and optimized. However, the frontend
part depends on the specific sensor suite available to the robot and thus
cannot easily be described in general. More information about the frontend
and Graph SLAM in general can be found in [31] and [13].

Algorithm 9: Graph SLAM
input : Initial guess x

Constraint graph C = {(eij , Ωij)}
output : Optimal configuration x∗

1
2 while not converged do
3 H, b← buildLinearSystem(x, C)
4 ∆x← solveSparse(H∆x = −b)
5 x = x + ∆x

6 end
7
8 x∗ = x

Final notes

In recent years, Graph SLAM has become a very popular algorithm for offline
SLAM. Compared to EKF-SLAM and FastSLAM, its power lies mainly in
its ability to optimize the whole graph at the same time. This allows it to
refine previous estimates and thus reduce global inconsistencies, which is
generally not possible with online SLAM. Furthermore, advances in sparse
linear solvers make it possible to optimize graphs with hundreds of thousands
of nodes and edges using libraries such as GTSAM [19] or G2o [49].

With this, we have covered the three main SLAM algorithms that have seen
widespread use - EKF-SLAM, FastSLAM and Graph SLAM. The last section
of this chapter is devoted to the problem of data association. Data association
is general in SLAM and as such many of its algorithms are applicable to any
of the SLAM formulations we have described so far.
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6.8 Data association

In the derivations of EKF-SLAM, FastSLAM, and Graph SLAM, we simpli-
fied the problem by assuming that the association between the landmarks
and measurements was known apriori. In other words, every measurement
carries extra information about which landmark generated that measurement.
However, the case of known data association is rare in real-world applications.
For example, in the Formula Student competition where landmarks are rep-
resented by traffic cones delineating the track, it is impossible to accurately
distinguish two cones based on the visual characteristics alone. The only
difference between the cones is in the color, which helps with rejection but
does not provide any information beyond that. Therefore, before a new
measurement is incorporated, it is necessary to carry out the data association
step. This step has two possible outcomes. Either a measurement is associ-
ated to an already existing landmark which is updated, or the measurement
belongs to a landmark which has not yet been observed. In such a case, a
new landmark is added to the map. The difficulty of data association is
exacerbated by the the motion and measurement uncertainty. If the noise is
high, the measurements become ambiguous. High motion error especially can
result in several different pose hypotheses being likely. These situations are
depicted in Fig.6.7 and A.3. A well-performing data association algorithm
is necessary to achieve high accuracy since incorrect associations lead to
inconsistent maps or even filter divergence. Visual tracking techniques may
help with tracking landmark identity in subsequent time steps but are not
sufficient for associating landmarks separated by a long time interval, which
is crucial for correctly detecting loop closures. In the following sections, we
describe some of the common data association algorithms.

6.8.1 Nearest neighbor

The nearest neighbor search is arguably the simplest method for data associ-
ation [68]. In simple terms, a new measurement is always associated with the
nearest landmark. Nearest is understood with respect to a type of distance
function. A common choice is either the Euclidean or Mahalanobis distance.
Specifically, given a measurement zk and a set of landmarks {mk,1, ...mk,M},
the corresponding landmark is selected as follows:

m∗ = arg min
m∈{mk,1,...mk,M }

d(zk, ẑj). (6.93)

Here, ẑj = h(mj), that is, ẑj is the predicted measurement. Following,
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Figure 6.7: An easy instance of the data association problem. Because the
sensor uncertainty is realtively low, even a simple greedy algorithm can correctly
match measurements to landmarks and decide that the middle measurement
constitutes a new landmark.

d(zk, ẑj) is the distance function. Substituting the Mahalanobis distance, we
get

m∗ = arg min
m∈{mk,1,...mk,M }

d(zk, ẑj) (6.94)

= arg min
m∈{mk,1,...mk,M }

√
(zk − ẑj)T S−1

j (zk − ẑj) (6.95)

= arg min
m∈{mk,1,...mk,M }

(zk − ẑj)T S−1
j (zk − ẑj) (6.96)

In the above, Sj corresponds to the innovation covariance of the measure-
ment:

Sj = HΣjHT + R, (6.97)

where Σj is the landmark covariance, H is measurement Jacobian and R
is the measurement noise. The nearest neighbor algorithm searches for a
landmark that minimizes the Mahalanobis distance to the given observation
zk. In general, the Mahalanobis distance is used to measure the distance
from an observation to a set of observations with mean mj and covariance Sj .
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Figure 6.8: A difficult instance of the data association problem. When the
measurement error is large, the association becomes ambiguous and simple data
association algorithms may fail.

Alternatively, it can also be thought of as a similarity measure between two
observations sampled from the same distribution with covariance Sj . The
Mahalanobis distance reduces to the Euclidean distance if the covariance
matrix Sj is the identity matrix.

The nearest neighbor algorithm is often favoured for its conceptual simplic-
ity and low computational complexity of Θ(nM), where n is the number of
simultaneous measurements and M is the number of landmarks. Space parti-
tioning techniques such as kd-trees bring down the complexity to O(nlogM)
on average. However, care must be taken to keep the tree balanced, otherwise
the complexity may degrade to a linear search.

In the nearest neighbor algorithm, a measurement is considered a new
landmark when the Mahalanobis distance between the measurement and the
landmark is too large. This distance threshold can be defined rigourously by
taking advantage of the properties of the Mahalonobis distance. If d(x, y) is
the Mahalanobis distance from x to y, it holds that that d(x, y)2 ∼ χ2

n, i.e.,
the squared Mahalanobis distance follows the Chi-squared distribution with n
degrees of freedom where k is the dimension of the vectors x and y. This fact
can be used to assess the individual compatibility by choosing a confidence
level α and subsequently creating a new landmark only when d(x, y)2 > χ2

n,α.
Algorithm 10 provides a pseudocode of the nearest neighbor algorithm.
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Algorithm 10: Greedy association

input : Measurements {zk,1, ..., zk,n}
Landmark means {µk,1, ..., µk,M}
Landmark covariance matrices {Σk,1, ..., Σk,M}
Measurement covariance R

output : Data assocition ck

1
2 for i← 1 to n do
3 bestDist =∞
4 bestLandmark = −1
5 for j ← 1 to M do
6 Sj = HkΣk,jHT

k + R

7 d =
√

(zk,i − ẑk,j)T S−1
j (zk,i − ẑk,j)

8 if d < bestDist and d2 < χ2
α then

9 bestDist = d
10 bestLandmark = j

11 end
12 ci = bestLandmark
13 end

6.8.2 Mutual exclusion

The nearest neighbor algorithm in its simplest form ignores the fact that
a sensor typically provides more than one measurement at a time. As
distinct measurements must logically originate from different landmarks, two
measurements cannot be associated with one landmark. We say that the two
assignments mutually exclude each other. The nearest neighbor algorithm
can be modified to enforce mutual exclusion as shown in Algorithm 11. Note
that this change does not effect the the overall computational complexity
of the algorithm. However, the benefit is that mutual exclusion makes it
easier to decide when a new landmark should be created. This is because a
measurement will not be associated with its closest landmark if the landmark
is already taken. This forces association with a landmark which is further
away, making it more likely that the measurement becomes a new landmark.
On the other hand, this modification makes the algorithm very sensitive to
the order in which the measurements are processed, which can lead to vastly
different assignments. Moreover, a single incorrect assignment can result in
a cascade of even more incorrect assignments due to the mutual exclusion
constraint.

To reduce the sensitivity of the algorithm, a better approach is to first
compute the distance matrix between the landmarks and the measurements.
The elements of the matrix are sorted in ascending order and assigned one
by one while enforcing mutual exclusion. This technique is more robust since

76



................................... 6.8. Data association

Algorithm 11: Improved Greedy association
input : Measurements {zk,1, ..., zk,n}

Landmark means {µk,1, ..., µk,M}
Landmark covariance matrices {Σk,1, ..., Σk,M}
Measurement covariance R

output : Data assocition ck

1
2 for i← 1 to n do
3 ci = −1
4 end
5
6 D ← n×M matrix // Compute distance matrix
7 for i← 1 to n do
8 for j ← 1 to M do
9 Sj = HkΣk,jHT

k + R

10 Di,j =
√

(zk,i − ẑk,j)T S−1
j (zk,i − ẑk,j)

11 end
12 end
13
14 I ← Sort indices (i, j) of D in ascending order of Di,j

15
16 for (i, j) in I do
17 if ci = −1 and D2

i,j < χ2
α then

18 ci = j

19 end

it is order-independent. It is however still a greedy algorithm and in many
cases provides inferior solutions as shown in Fig. 6.9.

6.8.3 Hungarian algorithm

The data association problem can be posed as an optimization problem
minimizing the total cost of the assignment. Consider n simulatenous mea-
surements {zk,1, . . . , zk,n}. The cost of the assignment is then:

c∗ = arg min
c

n∑
i=1

d(zk,i, ẑk,ci
). (6.98)

For simplicity, we assume that n ≤ M , that is, there are fewer measure-
ments than landmarks. This formulation makes the data association problem
an instance of the possibly unbalanced assignment problem [48], which can
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Figure 6.9: A comparison of nearest neighbor 10 (left), improved nearest
neighbor 11 (middle), and the Hungarian algorithm 6.8.3 (right). We can see
that both variants of nearest neighbor produce incorrect association. Only the
Hungarian algorithm is able to match both measurements correctly.

be solved optimally using the Hungarian Algorithm in O(max{M, n}3). In
a practical implementation, this algorithm is first used to match all mea-
surements to landmarks. Subsequently, a new landmark is created for every
unmatched measurement and every measurement where the distance is below
the given threshold. See Fig. 6.9 for a visual comparison between the different
methods. Other more sophisticated methods, such as the Joint compatibility
branch and bound algorithm, are discussed in [68].

6.8.4 Extension to Formula Student

In this section, we provide a simple extension of the data association to the
Formula Student competition, in which one can take advantage of the colors
of the cones for a more robust association. The rules of Formula Student
stipulate that the race track must contain two types of cones. Blue cones
are placed on the left side of the track in the driving direction, and yellow
cones are placed on the right side. To be precise, there are also small and big
orange cones used for marking the start and end positions, but for simplicity,
let us consider just the blue and yellow cones since these are by far the most
common. If the cone detection system of the autonomous formula provides
an information about the color of the measured cone, it is possible to design
a more robust data association algorithm that takes the color of the cone
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into account. The information about the color of the cones should prevent
the algorithm from matching together cones of different colors, which would
be otherwise possible if only the position of the cones was considered. We
model this problem probabilistically, considering that the color information
may not always be accurate. For example, in challenging lighting conditions,
a LiDAR-based cone detector can easily mistake the color of the cone. First,
we augment the measurement by adding the color information:

zk = (rk, φk, ck). (6.99)

Here, r and φ is the standard range and bearing measurement reported
by the detector. In addition, the measurement contains the binary color
information c ∈ { , }. The probability of observing a measurement zk

given that it was generated by a landmark mj is then

p(zk|xk, mj) = p(zk|ẑk) = p(rk, φk, ck|r̂k, φ̂k, ĉk). (6.100)

This can be further simplified:

p(rk, φk, ck|r̂k, φ̂k, ĉk) def= p(rk, φk|ck, r̂k, φ̂k, ĉk)p(ck|r̂k, φ̂k, ĉk) (6.101)
Markov= p(rk, φk|r̂k, φ̂k)p(ck|r̂k, φ̂k, ĉk) (6.102)
Markov= p(rk, φk|r̂k, φ̂k)p(ck|ĉk) (6.103)

Here we made and assumption that the measured position only depends
on the true position and not the color. Similarly, we also assumed that the
measured color only depends on the actual color and not the position of the
landmark. The second assumption may not be true in general. The distance
from a landmark to the sensor can indeed influence the detected color. The
final expression is a product of the standard range and bearing measurement
model and the color detection model. Since the color is a binary variable, we
only need to estimate 2 × 2 = 4 values. We can do this by evaluating the
cone detection algorithm on a training dataset and computing the individual
probabilities.

So far, we have assumed that the color of the landmark estimate is correct
and only the measurement is susceptible to errors. This reasoning is flawed
due to the fact that new landmarks are initialized from measurements. If
such measurement is incorrect, there is no mechanism to correct it. This
issue can be overcome by tracking the probability of the cone color over time.
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This is analogous to tracking the landmark probability of existence which
is employed in FastSLAM and can again be achieved using a static binary
Bayes filter:

p(c|x0:k, z1:k). (6.104)

The update rule is again expressed in terms of log-odds:

`(c|x0:k, z1:k) = `(c|xk, zk) + `(c|x0:k−1, u1:k−1)− `(c) (6.105)
Markov= `(c|ck)︸ ︷︷ ︸

inverse
measurement model

+ `(c|x0:k−1, u1:k−1)︸ ︷︷ ︸
previous belief

− `(c)︸︷︷︸
prior

(6.106)

The probability p(c|x0:k, z1:k) is computed from the log odds using

p(c|x0:k, z1:k) = 1− 1
1 + exp(`(c|x0:k, z1:k)) . (6.107)

For the purposes of data association, we can consider a given landmark
blue if p(c = |x0:k, z1:k) ≥ 0.5 and yellow otherwise. Alternatively, instead
of minimizing the Mahalanobis distance, one can instead maximize the
measurement likelihood:

m∗ = arg max
mj

p(rk, φk|r̂k, φ̂k)p(ck|ĉk). (6.108)

6.9 Final notes

In this chapter, we discussed the problem of simultaneous localization and
mapping. We showed the theoretical formulation of SLAM based on maximiz-
ing the posterior probability. Moreover, we described three popular SLAM
algorithms with many practical applications – EKF-SLAM, FastSLAM and
Graph SLAM. In the last section, we introduced the problem of data associ-
ation and its relevance to SLAM. In the following chapter, we describe our
proposed implementation of FastSLAM on GPUs.
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Chapter 7

FastSLAM GPU implementation

In this chapter, we describe our proposed GPU implementation of the Fast-
SLAM 1.0 algorithm, which is the main contribution of the thesis. Despite
being intended primarily for use in the Formula Student competition, the
proposed implementation is general and is thus suited for any feature-based
SLAM problem. The main goal of the implementation is to provide a real-time
algorithm which can be deployed on a variety of different GPUs. The overall
architecture is designed with speed and efficiency in mind. The reason for
this is twofold. First, the implementation is intended to be deployed in an
autonomous racing formula which can reach speeds of up to 100 km/h. This
necessitates that the algorithm operates at a very high frequency. Second,
the physical dimensions of the car, its cooling capability, and the amount of
power it can provide limit the choice of the GPU. Due to these constraints, it
is not possible to use the best available graphics card. Thus, the algorithm
needs to be as efficient as possible in order to attain satisfactory performance
even on low-end GPUs.

In the following sections, we discuss the benefits of the GPU programming
paradigm and how FastSLAM can benefit from it. In addition, we describe the
overall architecture and data structures used in the proposed implementation
and explain the specific modifications of the FastSLAM algorithm and the
reasoning behind them.

7.1 GPU programming

Graphics processing units offer a viable alternative to CPUs for programs
that can be efficiently parallelized. Compared to CPUs which can commonly
execute only a handful of threads in parallel, modern GPUs have the ability
to execute thousands of threads. Thanks to this, GPUs provide a much higher
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instruction throughput and vastly outperform CPUs in parallel workloads,
despite the individual GPU cores being typically much slower. Leveraging
the power of GPUs is especially enticing with respect to FastSLAM. The
basic FastSLAM algorithm is embarrassingly parallelizable [36], that is, the
algorithm is very easy to parallelize due to a lack of dependencies between the
individual particles. Indeed, bar a few collective operations such as weight
renormalization, FastSLAM particles are completely independent of each
other. Thus, at least in theory, a GPU implementation of FastSLAM should
provide an orders of magnitude speedup compared to a CPU implementation.
Currently, there exist several computing platforms for GPU programming,
most notably, CUDA [70], OpenCL [95] and OpenACC [101]. For our imple-
mentation, we chose to use CUDA for its wide adoption and popularity in
both the industry and academia.

7.1.1 CUDA

CUDA is a GPU computing platform designed by Nvidia and first released
in 2007. At the core, CUDA extends the C++ programming language by
adding new syntax and macros, which allows it to target Nvidia GPUs.
This way, one can easily mix host (CPU) and device (GPU) code in one
program, which is then compiled using the Nvidia compiler. In addition to
new language features, CUDA also includes several libraries optimized for
parallel programming, such as cuBLAS for linear algebra, cuFFT for fast
Fourier transform, and cuDNN for neural network support. Moreover, CUDA
is not limited to programming in C/C++. Indeed, CUDA can be used with
other programming languages such as Fortran or Python using the PyCUDA
library [46].

Thread hierarchy

The basic building block of a CUDA program is the kernel. Kernel is a
function intended to be executed on the device, distinguished from regular
functions by marking the function signature with a special macro. The kernel
function can then be invoked several times in parallel on the device. Before
a kernel may be executed, the execution configuration must be specified. In
simple terms, the execution configuration specifies how many threads should
be available to the kernel. The threads are then organized into a thread
block. The dimensions of this block determine the total number of threads.
For example, a kernel may request to run in a 32× 32 block configuration.
Within this block, each thread has access to its position within the block.
The thread can use its position to determine what part of the problem to
work on or what location in memory to access. CUDA supports 1D, 2D,
and 3D block configurations which naturally map to arrays, matrices, and
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Figure 7.1: A depiction of a kernel invocation. The execution configuration
of a kernel defines its grid and block dimensions which together give the total
number of threads available to the kernel.

volumes. A CUDA kernel may be invoked with multiple thread blocks. These
blocks are grouped into a grid whose dimensions determine the number of
blocks. All blocks in a grid must have the same size. Fig. 7.1 depicts the
relationship between kernels, grids, blocks, and threads. When a kernel is
launched, thread blocks are assigned to the GPU streaming multiprocessors
(SM) for execution in a FIFO manner. One SM may execute several blocks at
any given time. When all threads in a block are finished, the block is removed
from the SM and another block is moved in. Since thread blocks may be
executed in any order, it is important that the code is order-independent
at the block level. When a thread block is moved to an SM, it is first split
into warps which are groups of 32 threads. The warps are then executed
separately by warp schedulers. Typically, multiple warps of a single block are
executed in parallel. However, the exact number is highly dependent on the
specific architecture and on the resources available to the SM at the given
time.
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Memory model

CUDA defines three main types of memory available to the threads. Every
thread has access to its own local memory which holds local variables and
cannot be accessed by other threads. Furthermore, all threads in a block also
have access to a common shared memory, which can be used to interchange
data between threads within a single block. Shared memory is limited by
the SM, which affects how many thread blocks may be resident at any given
time. Finally, every thread has access to the global memory of the device.
The global memory, albeit much larger, is considerably slower than shared
memory. If a certain piece of data is to be accessed repeatedly by a thread,
a common design pattern is to first copy it from the global memory to the
shared memory before manipulating it. It is normally not possible to address
the device memory from the host and vice versa. In order to share data
between one another, explicit memory transfers are needed. However, newer
versions of CUDA implement unified memory, which allows the host and the
device to share the same memory address space, eliminating the need for
memory transfers.

Synchronization

Parallel algorithms commonly require some level of synchronization between
the threads. In CUDA, synchronization is typically needed when multiple
threads write to a shared or global memory and need to wait for all write
transactions to be visible to all other threads before continuing. In CUDA,
this is achieved by several synchronization primitives. At the lowest level,
there is the syncwarp directive which synchronizes threads within a warp. A
level above is syncthreads which synchronizes threads within an entire thread
block. Up until recently, there was no primitive to synchronize all threads
in the whole grid. However, a grid level synchronization can be achieved by
splitting the code into several kernels which are launched sequentially. In
newer CUDA versions, cooperative groups can be used to achieve the same
effect.

Thread synchronization helps prevent race conditions, however, a careless
use of synchronization may cause a deadlock in the program. When using
syncwarp or syncthreads, it is important to ensure that all concerned threads
will eventually reach the synchronization barrier. If at least one thread takes
a different code path due to a branch or an early return, the synchronization
will never finish. This is because no thread may continue past the barrier
unless all threads have reached it.
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Warp divergence

CUDA thread blocks are organized into groups of 32 threads called warps,
which are executed separately by warp schedulers. The defining property of
a warp is that the threads are executed in lock-step. That is, at any given
time, all threads are executing the same instruction. This is optimal as long
as the code is branchless. If the code contains a data-dependent branch that
is taken by some threads and not others, the warp scheduler needs to execute
these two thread groups sequentially one after another. This is called warp
divergence and depending on the number of branches present, warp divergence
may significantly limit the performance. In the worst case, if every thread in
a warp follows a different code path, the code becomes essentially sequential,
which also incurs the context switching overhead. To maximize instruction
throughput, branching within a single warp should thus be minimized, which
reduces the resulting warp divergence.

7.2 Implementation architecture

In this section, we discuss the overall architecture of the implementation, the
technologies and libraries used, and some main ideas behind the algorithm
and how it is adapted for GPUs. In the following sections, we then explain
the specific modifications which differ from the basic FastSLAM 1.0 algrotihm.
We only highlight the differences of this implementation rather than explaining
the whole algorithm as a thorough explanation was provided in chapter 6.
To be specific, the prediction and correction steps remain largely unchanged.
However, we describe the used data structures and modifications to data
association and resampling.

At the highest level, the implementation is split into two main parts. The
frontend, which is written in Python and the backend, which is written in
CUDA. The Python frontend handles initialization, data acquisition, GPU
instrumentation, and visualization. The CUDA backend, running on a CUDA-
capable GPU, is responsible for executing the FastSLAM algorithm itself.
See Fig. 7.2 and 7.3 for an illustration.

Using the CUDA terminology, the Python frontend acts as the host. It is
responsible for setting up the GPU which involves allocating memory for the
data structures and auxiliary buffers needed for the algorithm to operate. In
addition, it is responsible for initializing the particles and copying all data
to the GPU. The frontend also serves to acquire the robot odometry and
measurements. These are preprocessed and copied to the GPU. Finally, the
Python frontend extracts the map and pose estimates from the GPU and
optionally produces visualizations of the operation of the algorithm. The
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Python frontend is designed to either be used as a standalone application, or
as a part of a larger autonomous system based on, e.g., the Robot Operating
System (ROS) [77]. Indeed, the frontend can be easily adapted to serve as
a ROS node. Easy interoperability is the main reason Python was chosen
for the frontend as this allows us to seamlessly integrate it into our ROS-
based autonomous system. A secondary reason for choosing Python is the
abstractions it provides for working with CUDA GPUs. With the help
of the PyCUDA library [46], GPU instrumentation is rather simple and
straightforward, which reduces errors and increases maintainability.

The CUDA backend implements the FastSLAM algorithm itself. To aid
with maintainability and easier debugging, the GPU code is organized into
several separate kernels. These kernels are responsible for distinct parts of the
algorithm, e.g., prediction, correction, resampling, and several smaller tasks
such as weight renormalization. These kernels are invoked sequentially by the
frontend. Thanks to the decoupled architecture, the CUDA backend can be
used with a different frontend entirely, provided the same calling convention
is used. To avoid dynamic memory allocation on the device, all necessary
memory is preallocated at the beginning of the algorithm. This includes the
memory required to store the particles, auxiliary buffers for resampling, and
scratchpad memory used for data association. The FastSLAM algorithm is
parallelized per particle, that is, every CUDA thread is responsible for a single
particle. This is the most natural and straightforward way to parallelize the
algorithm.

Throughout this implementation, memory transfers between the host and
the device and vice versa are minimized to maximize performance. Aside from
the initial transfer of particles, which can be removed altogether, the only
data being copied is the odometry, the measurements, and the pose and map
estimates. The FastSLAM algorithm is a stochastic algorithm which makes
debugging very challenging. To help with reproducibility, every part of the
algorithm which relies on randomness is parametrized by a seed which is used
to initialize the random number generators. This means that if the algorithm
is rerun with the same seed, it is guaranteed to produce the same results.
This technique is essential to ensure the reproducibility of the algorithm.

7.3 Data structures

To take advantage of the massive parallelism provided by modern GPUs, we
need an efficient data structure to represent the particles. The data structure
has to be designed in a way to support parallel modifications to particles.
The data structure should also allow for an efficient manipulation of the robot
pose, the weight, and the landmarks. Regarding the map itself, retrieval,
insertion, update, and deletion of landmarks should be as efficient as possible
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Python
frontend

CUDA
backend

Measurements,
Odometry

Map & Pose
estimate

Figure 7.2: The architecture is split into a Python frontend and CUDA backend.

since these operations are very frequent.

Here, we propose a data structure that satisfies all of these requirements.
We describe the structure from top to bottom. At the highest level, the
data structure is stored in a linear block of memory. This block is then split
into individual particles. Each particle stores the robot pose, weight and the
map. The map is composed of separate landmarks represented by the EKF
means and covariance matrices. The data structure is parametrized by the
maximum possible map size. This is the maximum number of landmarks
the particles can store. Because the maximum map size is fixed, so is the
maximum size of every particle. The maximum size of a particle is a sum of
the space required to store the pose, weight and the map. Since every particle
has the same fixed size, it is possible to retrieve any particle from the data
structure in a constant time by computing its offset from the beginning of
the structure. Table 7.1 depicts the whole data structure. Each column in
the table represents a single particle. For easier visualization, the structure
is shown in a matrix form, although in reality, the memory layout is linear.
Each particle contains the robot pose, weight, the current size of the map,
and the landmarks themselves. We store the means of the Gaussians first,
followed by the the covariance matrices. The means and covariance matrices
are again stored at fixed offsets from the beginning of the particle. The means
start at offset 4 and the matrices start at 4 + 2 ∗M where M is the maximum
map size. This pattern can be extended for any extra information we wish
to store in the particle, such as the probability of existence or the landmark
color. These constant offsets guarantee that the retrieval, insertion, update,
and deletion of any landmark are constant as well. Specifically:..1. Retrieval: To retrieve a landmark or its covariance, simply calculate the

corresponding offset into the structure using the landmark ID.
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particles
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map, pose

Host
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Acquire
odometry

Acquire
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Visualization

Device

Prediction

Data
association

Correction

Resampling

Figure 7.3: A detailed view of the overall architecture. Arrows between the
CPU and GPU blocks represent memory transfers...2. Insertion: To insert a new landmark into the map, write the relevant

data to the first available slot after the last landmark and increment the
map size M i...3. Update: First, retrieve the landmark using the computed offset, update
the landmark and store it back in the same place...4. Deletion: First, compute the landmark offset. Then, swap it with the
last landmark in the map and decrement the map size M i.

It is easily verified that all four of these operations run in Θ(1). This makes
the structure very efficient and flexible. In later sections, we discuss some
drawbacks of the linearity of the structure relating to data association. Note
that if the real map size grows beyond the maximum limit allowed by the
structure, the structure can be resized to accommodate larger maps. By
doubling the size of the structure every time it is filled, the amortized time
complexity of all operations is still constant. See Table 7.2 for a summary of
the operations and their respective asymptotic time complexities.
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1
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2 Σ2

2 ΣN
2

...
...

...

Σ1
M1 Σ2

M2 ΣN
MN

0 0 0
...

...
...

0 0 0

Table 7.1: The memory layout of the particles data structure. Each column
represents a single particle. Each particle contains the state (a), weight (b), the
current map size (c), landmark means (d) and covariance matrices (e).

7.4 Data association

Our implementation uses the nearest neighbor algorithm (see Alg. 10) de-
scribed previously to associate measurements with landmarks. This choice
stems on the one hand from the fact that data association is computationally
intensive and thus to achieve real-time performance, a simpler but more effi-
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Fixed Dynamic

(Amortized)

Particle
Retrieval Θ(1) Θ(1)
Update Θ(1) Θ(1)

Landmark

Retrieval Θ(1) Θ(1)
Update Θ(1) Θ(1)

Insertion Θ(1) Θ(1)
Deletion Θ(1) Θ(1)

Table 7.2: The time complexity of operations on the proposed data structure.
Note that for the case in which the data structure is allowed to grow, the listed
time complexity is amortized over n consecutive operations.

cient algorithm is preferred. On the other hand, since FastSLAM computes
the data association on a per-particle basis, it is sufficient to use a simple
algorithm as unlikely associations will be resampled away.

Assuming a single measurement, the time complexity of a naive nearest
neighbor implementation is linear in the map size since the distance to every
landmark has to be computed. A logarithmic time complexity may be achieved
by using a tree data structure to store the map. This is difficult to implement
efficiently in practise for several reasons. The tree needs to support a nearest
neighbor search using Mahalanobis distance. For the Euclidean distance, k-d
trees may be used. To be more efficient than the naive implementation, the
tree needs to support a logarithmic time retrieval, insertion, and deletion in
the worst case or at least the average case. Furthermore, the tree needs to be
self-balancing or be able to rebalanced in at most logarithmic time as well. If
the tree becomes unbalanced, which may be caused by the robot exploring a
new area, the time complexity of all operations degrades to linear. Moreover,
if mutual exclusion is enforced, the tree may need to provide multiple nearest
neighbors in a single query.

Variants of a K-D-B tree [82] or a Balanced k-d tree [12] may potentially
be used, however, due to the complexity involved in implementing such a
structure efficiently on a GPU, we opted to use simpler heuristic optimizations
instead. To avoid computing the distance to every landmark, we first filter
landmarks that are within the perceptual range of the sensor. Only these
filtered landmarks are then considered as a potential correspondence. This
filtering step still has a linear complexity, however, if multiple simultaneous
measurements need to be processed, the filtering step is executed only once,
which spreads the cost over the measurements. Using the Big O notation, the
complexity of the original naive impementation is O(ZM), where Z is the
number of simultaneous measurements and M is the map size. Employing the
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sensor range heuristic, the complexity becomes O(M + ZR) where R is the
number of landmarks within the perceptual range of the sensor. Assuming the
sensor range is constant, the complexity becomes O(M + Z) which is linear
in both the map size and the number of measurements. Further heuristic
improvements are possible. If the perceptual range is enlarged sufficiently
compared to the speed of the robot, the filtering step need not be computed
in every time step. This is because if the range is large enough, the original
filtered set is still valid even after several time steps. This again helps spread
the filtering cost over multiple time steps. Unfortunately, these techniques
only reduce the constants in the overall complexity but are fundamentally
still linear as opposed to the logarithmic cost of the tree implementation.

7.5 Resampling

The implementation uses parallel systematic resampling to resample particles
(see Alg. 20). This resampling algorithm combines the low variance of the
ancestor vector together with the speed of parallel resampling. Further-
more, unlike stratified resampling which has similar properties, systematic
resampling requires to sample only a single random number. In chapter 5,
resampling is described as the problem of constructing the ancestor vector
which satisfies certain properties such as the unbiasedness condition (5.21).
However, in a real implementation, resampling entails a second step. In the
second step, the data structure holding the particles has to be physically
copied in accordance with the ancestor vector. The most straightforward
way to implement this is to maintain two buffers. A source buffer is used to
hold the old particles which are copied into the destination buffer. Once the
particles are copied, the buffers are swapped with the source becoming the
destination buffer and vice versa. This implementation essentially doubles
the memory requirements of the algorithm as it requires an auxiliary buffer.

Authors of [64] describe a more efficient way in which the particles are
copied only when needed. This approach helps decrease the required memory
significantly. However, due to the complexity of the algorithm, combined
with the requirement of thread safety given by the GPU, we decided to forgo
this implementation in favor of a simpler option which copies all particles but
needs only a single buffer. This technique is called in-place resampling [66].

7.5.1 In-place resampling

In-place resampling requires only a single buffer, which reduces the memory
requirements by half, compared to the source-destination buffer method. A
minor complication is that given an arbitrary ancestor vector, it is generally
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1 2 3 4 5 6 7 8 9 10

1 1 6 2 3 3 8 9 8 6

Figure 7.4: For some permutations of the ancestor vector (bottom), particles
are both written to and read from (top). The red arrows demonstrate a conflict
with the particle x2. Based on the ancestor vector, the particle is to be copied
to position 4. At the same time, particle x1 writes to the position of particle x2

leading to a possible race condition.

not possible to copy the particles in-place in parallel. Consider the case shown
in Fig. 7.4. The arrows are given by the ancestor vector and represent into
which place the given particle should be copied. If there are multiple arrows
originating from a particle, the particle is copied several times in the new
generation. Looking at particle x2, which is highlighted in red, we see that it
should be copied to index 4, that is, a4 = 2. At the same time, particle x1

should be copied to index 2. If we copy all particles in parallel, the memory
location of particle x2 will be both written to and read from simultaneously.
This is a read-write conflict and is an undefined behavior in CUDA. This
race condition stems from the fact that multiple threads may access the
same memory location at the same time, which would not be the case if the
particles were copied sequentially. This problem can be remedied, however.
As shown by [66], it is always possible to permute any ancestor vector such
that all read-write conflicts are eliminated. Such an ancestor vector is called
conflict free. Note that permuting the ancestor vector has no effect on the
resampling itself. The permuted ancestor vector is then used to copy the
particles. An ancestor vector is said to be conflict-free, provided the following
sufficient condition holds:

oi > 0 =⇒ ai = i. (7.1)

Here, o is the offspring vector and a is the ancestor vector defined in 5.1
and 5.2, respectively. In other words, if a particle has at least one offspring,
one of the offsprings has to be copied to the same position as the original
particle. This ensures a stable location from which the particles can be copied
without being overwritten which eliminates race conditions. An ancestor
vector can always be permuted such that (7.1) holds. This is shown in
Algorithm 12. The permute algorithm works by sequentially reading ai and
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verifying that it is in the correct location, that is, ai = i. If not, it checks
if the correct location given by aai already contains the same particle. If
that is also false, the algorithm swaps the two positions, fixing one particle.
The algorithms continues until it scans the whole vector at which point, the
vector is conflict-free. The permute algorithm is sequential and runs in O(n).
Authors of [66] propose a modification of this algorithm which is readily
parallelized. An explanation of this algorithm is provided in Appendix A.5.1.
In our implementation, we use the parallel algorithm.

Algorithm 12: Permute
input : An ancestor vector {a1, . . . , aN}

1
2 for i← 1 to N do
3 if ai 6= i and aai 6= ai then
4 swap(ai, aai)
5 i = i− 1 // repeat with a new value
6 end

7.6 Numerical stability

When implementing the FastSLAM algorithm, one needs to pay close attention
to numerical issues which may arise as a result of the floating point arithmetic.
Floating point is a finite precision arithmetic and especially for very large or
very small numbers, the precision may degrade significantly depending on
the specific floating point implementation used. FastSLAM contains several
spots where numerical instability may effect the behavior and accuracy of
the algorithm.

The first two spots relate to the weight computation. In both versions of
FastSLAM, the particle weights are computed from a Gaussian PDF. If the
particle is highly unlikely, the computed weight will be very small. Depending
on the precision, if the weight is small enough, it may be rounded to zero. If all
particle weights are rounded this way, the weight renormalization introduces a
division by zero. To prevent this, an explicit check for a zero or near-zero sum
has to be added. If such an event occurs, the particle weights should be reset
to uniform weights. The second spot is related to the weight normalization.
To renormalize the weights, the sum has to be computed. As most weights
tend to be close to zero, summing will inadvertently introduce round-off errors
which will accumulate as all weights are added. The final step of normalization
is dividing the weights by this sum. If the sum itself is close to zero, the
resulting weight will be imprecise. As a result, the sum of the normalized
weights may differ from 1 enough to introduce bias in the resampling step.
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Another critical spot is the resampling itself. In this implementation, we

opted to use parallel systematic resampling. This resampling algorithm needs
to first compute the cumulative sum. Due to the round-off error which is
exacerbated by the repeated sums, the partial results may be imprecise,
especially towards the end of the cumulative sum. This can again introduce
bias in the resampling algorithm.

The last critical spots are matrix inverses. There are several places in the
algorithm where the matrix inverse is computed. Namely, the EKF equations
and the importance weight. If the original matrix is close to singular, several
problems may arise. First, when computing the importance weight, the
determinant of the covariance matrix may be negative due to rounding errors.
This may pose a challenge since the Gaussian PDF needs to evaluate the
square root of the determinant. Second, the resulting matrix inverse may be
relatively imprecise or even infinite if the determinant is close to zero.

To prevent or atleast partially decrease the impact of these problems
arising from the imprecision of floating point arithmetic, all floating point
computations are carried out in double precision IEEE-754 floats. The
machine epsilon of a double precision float is approximately 10−16 compared
to the single precision epsilon of 10−8. The increased precision should be
sufficient to prevent any numerical issues. The drawbacks of this decision
are increased memory requirements and slower execution of computationally
demanding sections of the algorithm.

7.7 Discussion

In this chapter, we described our proposed implementation of a real-time
SLAM system using the FastSLAM 1.0 algorithm. The implementation is split
into the frontend handling data aquisition and preprocessing, and the backend
which is executed on a GPU and implements the actual SLAM algorithm. We
explained the most important modifications to the basic FastSLAM algorithm
which was fully described in chapter 6. These modifications include a design
of an efficient, yet simple data structure to represent the particles, a data
association algorithm based on the nearest neighbor, and a modification to
resampling which cuts memory requirements by half. A common theme in
this implementation is that simplicity is preferred over complexity as long
as the performance loss is not too severe. Specifically, we chose to use less
efficient but simpler algorithms for both data association and resampling.
This is deliberate as it keeps the codebase simple and allows for rapid changes
even by people less familiar with the problem of SLAM. In addition, as
the experiments show in the next chapter, the performance of the proposed
implementation is more than sufficient for a real-time SLAM system.
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Chapter 8

Experimental results

In this chapter, we evaluate the proposed implementation on a variety of
simulated and real-world datasets. Specifically, we measure the accuracy of
the proposed implementation as a function of the number of particles used.
Both known and unknown data association is considered. In addition to the
accuracy, we evaluate the performance of the algorithm, the memory require-
ments, and its suitability for real-time applications. Most importantly, we
evaluate the applicability of our implementation for the Formula Student com-
petition. Finally, we investigate the scaling properties of the implementation
to identify possible bottlenecks and discuss further improvements.

8.1 Accuracy statistics

To properly compare and evaluate SLAM algorithms, a suitable statistic
for measuring accuracy is needed. Unfortunately, a standard statistic does
not exist in the SLAM community. Perhaps the most common statistic is
the mean square error (MSE) of the estimated robot path. This statistic
intentionally ignores the map in assessing the overall accuracy. The reasoning
behind this is justified as follows. In general, a small error in the robot pose
implies a small error in the map. This is because a precise robot localization
largely depends on a correctly estimated map. We can apply this argument in
the opposite direction as well. That is, an incorrect map implies an incorrect
path. Thus, in principle, statistics that only evaluate the accuracy of the
robot path, such as the MSE, ought to be sufficient in providing insight
about how well a given algorithm performs. Another reason for preferring
statistics that assess only the path error is that it is not at all obvious how to
combine the path error with the map error into a single, informative statistic.
Moreover, assessing the map quality is difficult in itself. This is because to
compute the error, the estimated landmarks need to be associated with the
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ground truth. Moreover, the map estimate may contain a different number of
landmarks, which necessitates extending the statistic to quantify false positive
and false negative landmarks. For these reasons, restricting the error statistic
to the path error is usually preferred. Consider the standard MSE definition
below:

εMSE(x1:K) = 1
N

K∑
k=1
||xk − x∗

k||2, (8.1)

where x1:K is the estimated robot path {x1, . . . , xK}, x∗
1:K is the true

robot path {x∗
1, . . . , x∗

K} and (xk −x∗
k) computes the relative transformation

δk,k∗ between the two poses such that

xk + δk,k∗ = x∗
k. (8.2)

If the transformation includes rotations, the angle differences are normalized.
Since the robot position and orientation have different scales, it is better
to measure the error of the translational component and the rotational
component separately. As the authors of [50] point out, statistics that rely on
the global reference frame, of which MSE in an example, may be misleading.
This is due to the fact that a small mistake at the start of the path will have
an additive effect on the error for all subsequent poses. Borrowing an example
from [50], consider a robot moving in a straight line. At the time step 1, the
robot overestimates its position by e. However, in the subsequent K − 1 time
steps, the robot estimates its relative movement correctly. This situation is
depicted in Fig. 8.1. Now, if we measure the MSE of the robot path, the
error is K × e, despite the robot only making a mistake at the beginning.
Moreover, if we were to measure the error starting at the end and going back,
the error would be only e. Similar situation arises with the rotational errors
of the robot heading shown in the same figure.

As we have just shown, MSE depends on the coordinate frame and thus
tends to compound errors over time, which may skew the results. Authors
of [50] instead propose to compare only the relative poses. That is, instead
of computing the difference of a pair of poses, we compute the difference
between the relative displacements of two pairs of poses. Mathematically, we
have

εRel(x1:K) = 1
N

∑
i,j∈S

||δi,j − δ∗
i,j ||2, (8.3)

where

96



.................................. 8.2. Simulated dataset
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e

α

Figure 8.1: An example of the estimated robot path where the MSE statistic
is misleading. If the robot makes a translational (top) or a rotational error
(bottom) at the beginning of the path, the error is carried over into the subse-
quent time steps.

δi,j = xj − xi (8.4)
δ∗

i,j = x∗
j − x∗

i . (8.5)

In the above, δi,j is the relative displacement between the pose xi and xj .
Note that the above definition leaves the choice of the relative displacements
up to us. The choice of pairs is given by the set S. Depending on which
displacements are chosen, different properties of the resulting map can be
measured. For example, one can choose to only compare consecutive or
nearby poses. Such statistic would in turn measure the local consistency of
the map. Adding loop closure links adds information about the quality of
loop closures. Finally, adding links between poses that are far away from
each other indicates global consistency. These situations are depicted in Fig.
8.2. In the experiments that follow, for every dataset, we report both the
MSE and the relative error (8.3) with manually chosen poses. In addition, we
report both the translational and rotational error of both of these statistics
separately. The translational error is given in meteres and the rotational
error is given in degrees.

8.2 Simulated dataset

We start by evaluating our implementation on a simulated dataset. We
consider a robot moving in a virtual 2D environment. The dimensions of the
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local consistency loop closure global consistency

Figure 8.2: Depending on which relative displacements are chosen, different
properties of the map may be highlighted.

environment are 20× 20 meters. The robot is equipped with a sensor with a
limited range. The environment is relatively sparse and consists of twenty
landmarks. The robot is given commands to move to random waypoints in
the environment and eventually returns back to the starting position. This
means that the SLAM algorithm has to correctly handle a loop closure. Fig.
8.3 shows the environment together with the robot path. The robot uses the
following nonlinear motion model:

xk

yk

θk

 =

xk−1 + v cos(xk)dt
yk−1 + v sin(yk)dt

θk−1 + ωdt

 , (8.6)

where v is forward velocity and ω is angular velocity of the robot. Zero
mean Gaussian error is added to both the robot motion and the sensor
which captures the range and bearing of visible landmarks. The sensor
range is limited to four meters and the field of view is 135°. We evaluate
our implementation using both known and unknown data association. The
accuracy and performance are compared with an implementation provided
by Python Robotics [84]. Python Robotics is an open-source collection of
robotics algorithms, mainly concerned with navigation, localization, mapping,
and SLAM, intended to be a source of practical learning material for widely
used robotics algorithms. The Python Robotics implementation of FastSLAM
1.0 merely serves as a baseline for the accuracy of our algorithm. Moreover,
since it is implemented in Python without the use of parallelization, we can
use it to judge the performance of our GPU implementation compared to a
purely CPU-bound algorithm.

We report both the MSE and the relative error (8.3). The chosen relative
displacements for the relative error are consecutive waypoints of the robot
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Particles MSE(trans) MSE(rot) Rel(trans) Rel(rot)
4 0.35 ±0.28 1.09 ±0.97 0.39 ±0.30 0.85 ±0.32
8 0.18 ±0.14 0.48 ±0.32 0.18 ±0.09 0.40 ±0.23
16 0.14 ±0.11 0.38 ±0.42 0.12 ±0.10 0.31 ±0.18
32 0.12 ±0.11 0.23 ±0.22 0.08 ±0.06 0.20 ±0.14
64 0.07 ±0.04 0.20 ±0.16 0.06 ±0.04 0.12 ±0.05
128 0.08 ±0.08 0.13 ±0.12 0.05 ±0.04 0.13 ±0.07
256 0.09 ±0.06 0.17 ±0.16 0.06 ±0.05 0.10 ±0.06
512 0.05 ±0.03 0.07 ±0.06 0.03 ±0.02 0.09 ±0.05
1024 0.06 ±0.05 0.09 ±0.10 0.04 ±0.03 0.09 ±0.05

Table 8.1: Accuracy on the first simulated dataset with known data association

Particles MSE(trans) MSE(rot) Rel(trans) Rel(rot)
4 11.74 ±6.99 26.20 ±21.25 7.32 ±5.10 10.61 ±5.72
8 5.60 ±5.96 12.23 ±30.46 3.72 ±5.88 5.61 ±8.44
16 3.12 ±3.95 6.90 ±10.33 2.11 ±2.32 2.63 ±2.12
32 1.86 ±2.33 4.52 ± 5.50 1.64 ±1.86 2.29 ±2.50
64 0.52 ±1.56 1.27 ± 3.63 0.47 ±1.44 0.72 ±1.82
128 0.15 ±0.29 0.26 ± 0.55 0.10 ±0.16 0.18 ±0.14
256 0.06 ±0.05 0.12 ± 0.10 0.06 ±0.05 0.12 ±0.09
512 0.07 ±0.08 0.13 ± 0.16 0.06 ±0.05 0.11 ±0.07
1024 0.08 ±0.07 0.18 ± 0.23 0.06 ±0.06 0.13 ±0.11

Table 8.2: Accuracy on the first simulated dataset with unknown data association

path. We added a loop closing displacement connecting the first and the
last waypoint which have the same position. This helps assess how well
the algorithm can handle loop closures. Fig. 8.4 shows an example of the
estimated robot path and the map using our implementation with unknown
data association. The accuracy is measured for an increasing number of
particles and then averaged over 20 different runs due to the stochastic nature
of the algorithm. Table 8.1 and 8.2 show the complete results for known and
unknown data association, respectively. Fig. 8.5 shows the translational MSE
of our implementation compared to the Python Robotics implementation.
For unknown data association, an increased number of particles helps reduce
the error significantly. Notice that for known association, significantly fewer
particles are required to achieve the same level of accuracy. Due to the
single-threaded nature of the Python Robotics implementation, we were
unfortunately unable to measure the accuracy beyond 128 particles due to
the time requirements. See 8.5 for a detailed performance analysis.
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Robot path Landmarks

Figure 8.3: The virtual environment of the simulated dataset

8.3 FS Online

The SLAM implementation proposed in the thesis is primarily intended to
be used in the Formula Student competition. As such, the implementation
should be evaluated on a dataset resembling the racing events of Formula
Student. Unfortunately, due to the Covid-19 pandemic, we were not able to
collect a comprehensive dataset from our formula. However, following the FS
Online competition in 2020, we gained access to the simulation environment
provided by the competition organizers. The simulator, called Formula
Student Driverless Simulation (FSDS) [1], is built on top of Unreal Engine
[86], AirSim [92] and the Robot Operating System [77].
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Robot path
Estimated path

Landmarks
Estimated landmarks

Figure 8.4: An example of the estimated robot path and the final map on the
simulated dataset

We used FSDS to collect data from a formula completing one lap in a
virtual track which was used in the FS Online competition. The track, shown
in Fig. 8.7, is approximately 400 meters long and is delineated by 200 traffic
cones. Even though this dataset is simulated, it is of great importance for
evaluating the proposed implementation. This is because the virtual track
closely resembles the tracks used in real racing events in both size and topology.
To collect the data, we used the same sensor setup and algorithms that we
competed with in the FS Online event. The virtual sensor suite consists of
a ground speed sensor (GSS), an inertial measurement unit (IMU), a GPS
unit, and a LiDAR sensor which are all implemented by AirSim based on real
sensors. Using a GSS, IMU and GPS, a pose estimate of the formula was
computed. Thanks to the information from the GPS, the problem of loop
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Figure 8.5: A graph showing the translational MSE on the simulated dataset as
the number of particles increases

closure and global consistency was made significantly easier. This is because
with the GPS, we had access to the (noisy) global pose of the car. This is
similar to the real Formula Student events, which do not forbid the use of a
GPS and many teams take advantage of this. Once the pose was estimated,
a clustering algorithm was used to detect the traffic cones from the LiDAR
pointclouds. Due to a large uncertainty in the heading of the formula, the
angle component of the measurements was relatively imprecise as is shown in
Fig. 8.8. This figure shows the histogram of all measurements taken in this
particular area together with the true landmark positions. In the figure, we
can see that the range component is relatively much more precise compared
to the bearing component.

We again evaluated our implementation for an increasing number of parti-
cles, measuring the average MSE and the relative error over 20 runs for every
setting. Since global consistency is guaranteed by the GPS, we used only
consecutive poses for the computation of the relative error. Fig. 8.9 shows an
example of the final path and map estimate. We compare both known and
unknown data association. The complete results are summarized in Table
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Figure 8.6: The Formula Student Driverless Simulation [1]

Particles MSE(trans) MSE(rot) Rel(trans) Rel(rot)
4 0.15 ±0.01 0.39 ±0.02 0.16 ±0.01 0.74 ±0.04
8 0.13 ±0.02 0.27 ±0.03 0.10 ±0.01 0.47 ±0.04
16 0.12 ±0.02 0.18 ±0.03 0.06 ±0.01 0.27 ±0.03
32 0.09 ±0.02 0.10 ±0.02 0.04 ±0.00 0.13 ±0.02
64 0.09 ±0.03 0.07 ±0.03 0.03 ±0.00 0.07 ±0.02
128 0.06 ±0.01 0.04 ±0.01 0.02 ±0.00 0.03 ±0.00
256 0.05 ±0.01 0.02 ±0.00 0.02 ±0.00 0.02 ±0.00
512 0.05 ±0.00 0.02 ±0.00 0.02 ±0.00 0.01 ±0.00
1024 0.05 ±0.00 0.01 ±0.00 0.02 ±0.00 0.01 ±0.00

Table 8.3: Accuracy on the FS Online dataset with known data association

8.3 and 8.4. Finally, a graph of the translational MSE is shown in Fig. 8.10.
Increasing the number of particles has the effect of decreasing both the MSE
and the relative error. Variation with known data association again performs
better than the unknown association. In this case, the difference is not as
significant as in the previous dataset. This is because the GPS helps bring
down the error of the variant with unknown association.

8.4 UTIAS

In addition to the simulated datasets we have shown previously, we evaluate
our implementation on real-world data collected by the University of Toronto
Institute for Aerospace Studies (UTIAS). The UTIAS dataset collection [53]
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Robot path Landmarks

Figure 8.7: The FS Online virtual track used in the experiments

contains 9 separate indoor datasets. Each dataset was recorded with 5 robots
simultaneously moving in an environment containing 15 landmarks. The
dataset is intended for studying cooperative localization with a known map
and cooperative SLAM. However, for the purposes of evaluating our SLAM
implementation, the dataset can be adapted for a single robot SLAM by
simply considering data from one robot only.

In each dataset, the robots move to random waypoints in the environment.
The dimensions of the environment are 15 × 8 meters. While moving, the
robots collect odometry data – forward and angular velocities. In addition,
each robot is equipped with a camera for detecting landmarks. The landmarks
are cylindrical tubes placed randomly in the environment. Each landmark
has a barcode which the robots detect using the onboard camera and report
its range and bearing. The dataset also provides accurate robot ground truth
poses using a 10-camera Vicon motion capture system.

To estimate the dead-reckoning pose, we use the same kinematic model
as described in (8.6). If we look at the measurement histogram depicted in
Fig. 8.11, it is apparent that some landmarks have many outliers. This may
cause problems with the Extended Kalman filters tracking landmark positions.
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Robot path Measurements Landmarks

Figure 8.8: A section of the FS Online track showing the histogram of all
measurements taken in this area. We can see that the error in the angle
component is comparatively much larger.

Outliers can have the effect of shifting the mean of the Gaussian far away
from the true position while at the same time decreasing the uncertainty.
This makes the EKF more resistant to future correct measurements and at
the same time lowers the weight of correct particles. To counteract this, a
more conservative estimate of the measurement covariance is needed.

We tested the UTIAS dataset with both known and unknown data associa-
tion. An example of the final path and map estimate is shown in Fig. 8.12.
We again evaluate the accuracy for an increasing number of particles. Each
configuration is run twenty times and the average is reported. The poses used
for the relative error are a combination of consecutive and far away poses to
assess both the local and global consistency. The results are summarized in
Table 8.5 and 8.6. Fig. 8.13 shows the translational MSE for both the known
and unknown data association. In this dataset, the kinematic model tends to
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Robot path
Estimated path

Landmarks
Estimated landmarks

Figure 8.9: An example of the estimated robot path and the final map on the
FS Online dataset

drift significantly from the ground truth, especially when the angular velocity
is large as shown in Fig. 8.14. Large pose uncertainty is not necessarily
problematic on its own. However, in this dataset, it is common that the
robots execute a long turn during which no measurements are taken. Due to
the large heading uncertainty, during this turn, most particles drift to areas
of low likelihood. Because FastSLAM 1.0 has no mechanism to correct the
particle trajectory, once new measurements are received, it is possible that no
particles are close to the true pose, which inevitably causes filter divergence.
An example of filter divergence is shown in Fig. 8.15. For this reason, a
sufficient number of particles needs to be used to reach a large enough density
which can recover from prolonged intervals without any measurements. We
remark that FastSLAM 2.0 can deal with this problem by correcting particles
towards areas which agree with the measurements and thus is not effected
to the same degree by the lack of sensor input. The results again confirm
that the algorithm performs significantly better with an increasing number of
particles. Finally, the variant with known association achieves the same error
with much fewer particles. This because known association eliminates the
need for correct loop closures.
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Particles MSE(trans) MSE(rot) Rel(trans) Rel(rot)
4 0.18 ±0.01 0.35 ±0.04 0.23 ±0.01 0.57 ±0.05
8 0.16 ±0.02 0.30 ±0.05 0.17 ±0.01 0.37 ±0.06
16 0.12 ±0.02 0.25 ±0.05 0.10 ±0.01 0.22 ±0.04
32 0.11 ±0.03 0.19 ±0.04 0.06 ±0.01 0.15 ±0.03
64 0.10 ±0.02 0.16 ±0.05 0.04 ±0.01 0.09 ±0.02
128 0.07 ±0.01 0.08 ±0.02 0.03 ±0.00 0.04 ±0.01
256 0.06 ±0.01 0.06 ±0.02 0.02 ±0.00 0.03 ±0.01
512 0.05 ±0.01 0.05 ±0.01 0.02 ±0.00 0.02 ±0.01
1024 0.05 ±0.01 0.04 ±0.01 0.02 ±0.00 0.02 ±0.00

Table 8.4: Accuracy on the FS Online dataset with unknown data association

Particles MSE(trans) MSE(rot) Rel(trans) Rel(rot)
4 0.11 ±0.04 1.64 ±0.43 0.12 ±0.04 2.12 ±1.32
8 0.06 ±0.02 1.20 ±0.11 0.06 ±0.02 1.09 ±0.48
16 0.05 ±0.03 1.15 ±0.32 0.06 ±0.03 0.65 ±0.29
32 0.05 ±0.02 1.14 ±0.16 0.05 ±0.02 0.49 ±0.20
64 0.04 ±0.03 1.07 ±0.12 0.04 ±0.02 0.31 ±0.13
128 0.04 ±0.02 0.99 ±0.11 0.04 ±0.01 0.30 ±0.13
256 0.03 ±0.02 1.00 ±0.15 0.04 ±0.01 0.22 ±0.08
512 0.03 ±0.02 0.98 ±0.12 0.04 ±0.01 0.22 ±0.04
1024 0.03 ±0.01 0.94 ±0.12 0.04 ±0.01 0.23 ±0.10
2048 0.03 ±0.01 0.94 ±0.11 0.04 ±0.01 0.17 ±0.05
4096 0.03 ±0.02 0.87 ±0.08 0.04 ±0.01 0.19 ±0.06
8192 0.03 ±0.01 0.88 ±0.09 0.04 ±0.01 0.19 ±0.04

Table 8.5: Accuracy on the UTIAS dataset with known data association

8.5 Performance

Finally, we evaluate the performance of our proposed implementation. We are
interested in the scaling properties of the algorithm with respect to both time
and memory. All experiments in this section were carried out on a laptop
with Intel i7-8550U 1.8GHz and Nvidia GTX 1660 GPU. The accuracy of
FastSLAM is directly linked to the number of particles used to approximate
the SLAM posterior. It is then important that a FastSLAM implementation is
capable of efficiently simulating as many particles as possible. We investigate
how the algorithm scales as a function of the number of particles and as a
function of the number of simultaneous measurements.
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Figure 8.10: A graph showing the translational MSE on the FS Online dataset
as the number of particles increases

We first measure the performance on the first simulated dataset. We record
the total runtime of the simulation for an increasing number of particles.
This is again repeated twenty times and the average is reported. We measure
the time for both known and unknown correspondence and compare the
execution time with the implementation provided by Python Robotics. We
once again remark that this comparison only serves to highlight the potential
speedups that are possible by leveraging the massive parallelism of modern
GPUs compared to a pure CPU implementation. A logarithmic plot of the
results is shown in Fig. 8.16. We can see that even for a small number of
particles, our proposed implementation is orders of magnitude faster with
better scaling. Due to the time requirements, we were not able to collect data
for the Python Robotics implementation beyond 1024 particles.

Next, we evaluate the scaling properties as a function of the number of
simultaneous observations. For this evaluation, the robot is placed in a virtual
environment containing 1000 landmarks uniformly distributed along the robot
path. The robot moves forward at a constant velocity. The simulation
lasts 200 time steps after which the robot has incorporated all landmarks.
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Particles MSE(trans) MSE(rot) Rel(trans) Rel(rot)
4 4.10 ±5.36 23.33 ±34.72 5.73 ±6.28 18.43 ±21.75
8 2.08 ±2.78 9.59 ±13.20 2.83 ±3.52 10.22 ±13.45
16 1.18 ±1.45 4.71 ± 4.74 2.25 ±1.95 6.96 ± 8.66
32 2.00 ±3.01 7.94 ±10.61 2.47 ±3.24 7.14 ± 9.19
64 2.40 ±2.89 8.82 ± 9.72 2.78 ±2.96 11.90 ±19.21
128 1.02 ±2.00 4.99 ± 8.02 1.42 ±2.14 6.24 ±12.75
256 0.60 ±1.76 3.02 ± 5.89 1.03 ±1.96 2.74 ± 5.06
512 0.82 ±1.89 3.88 ± 7.02 1.16 ±2.09 4.33 ± 9.41
1024 0.30 ±0.79 1.43 ± 1.40 0.44 ±1.12 0.88 ± 1.77
2048 0.06 ±0.11 1.13 ± 0.83 0.30 ±0.93 0.90 ± 2.26
4096 0.03 ±0.02 0.90 ± 0.11 0.03 ±0.01 0.22 ± 0.08
8192 0.03 ±0.03 0.86 ± 0.09 0.03 ±0.01 0.22 ± 0.07

Table 8.6: Accuracy on the UTIAS dataset with unknown data association

By increasing the sensor range of the robot, we can control the number
of simultaneous measurements that the robot observes. We then measure
the total execution time of the simulation as the number of simultaneous
measurements increases. Here, we again compare both known and unknown
correspondence for 128 and 1024 particles. The results are shown in Fig.
8.17. Based on the results, which are confirmed by profiling the GPU code,
we conclude that the most time is spent in the data association step. This
is given by the time complexity of the data association algorithm. Recall
that the time complexity is O(M + ZR), where M is the map size, Z is the
number of measurements and R is the number of landmarks in the sensor
range. Thus, when the robot observes more landmarks, both Z and R increase
simultaneously. As we noted in the previous chapter, by using K-D-B trees
[82] or Balanced k-d trees [12], the complexity can be brought down to
O(ZlogM). However, the extra overhead and hidden constants may make it
less efficient when the number of simultaneous observations is relatively low,
as is the case in Formula Student.

In the previous paragraph, we evaluated the scaling properties of our
implementation for extreme cases. However, we are also interested in the
expected performance on an average instance. Since the FS Online dataset
closely resembles real events in terms of the available sensors and the map size,
we evaluated the performance on this dataset as well. Fig. 8.18 shows the total
runtime of the simulation as the number of particles increases. To get a better
intuition behind these numbers, Fig. 8.19 shows the update frequency rather
than the total runtime. The update frequency denotes how many times per
second a single step of the FastSLAM algorithm was performed. The update
frequency counts the whole algorithm, that is, prediction, correction, data
association, and resampling. For 1024 particles and unknown correspondence,
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Robot path Landmarks Measurements

Figure 8.11: Histogram of all measurements taken by one robot in the UTIAS
dataset. Notice that for some landmarks, the robot generates distant outliers.

the algorithm runs at approximately 370Hz.

Another point related to performance, is the execution configuration of
the GPU kernels. CUDA requires the program to specify the block and grid
dimensions that the kernels are launched with. Suboptimal configurations
can significantly degrade the performance and thus it is worth to invest
time to find an optimal configuration. By methodically comparing different
configurations, we were able to further achieve a 2x speedup. This speedup
comes from deliberately launching kernels with significantly smaller block
sizes than what the GPU Streaming multiprocessors (SM) can execute. The
most likely explanation for why this leads to an increase in speed is that the
algorithm exhibits a large degree of warp divergence caused mainly by data
association. This makes different particles execute different branches of the
code even in a single warp. Since a block can only be removed from an SM
when all of its threads have finished, diverging threads keep the SM from
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Robot path
Estimated path

Landmarks
Estimated landmarks

Figure 8.12: An example of the final path and map estimate on the UTIAS
dataset

scheduling new blocks. Thus, by keeping the block size smaller, the SM can
cycle through blocks more efficiently.

Lastly, we look at the memory scaling of the GPU implementation. Our
implementation scales linearly with respect to both the number of particles and
the map size. Apart from several auxiliary buffers and scratchpad memory
reserved for data association, most memory is taken up by the particles
themselves. One particle takes up approximately 8 × 6 ×M bytes, where
8 is given by the size of a double precision float, 6 is the number of floats
needed to store the mean and covariance of a landmark, and M is the map
size. Fig. 8.20 shows a graph of the memory usage for known and unknown
correspondence. The memory requirements for known correspondence are
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Figure 8.13: Comparison of the translational MSE of known and uknown data
association on the UTIAS dataset

slightly lower as no extra memory for data association is needed. Fig. 8.20
shows the memory requirements for increasing map size for 128 and 1024
particles. To store 1024 particles each with 105 landmarks, the algorithm
needs approximately 700MB. In the case of FS Online with 1024 particles
and 200 landmarks, the required memory is approximately 15MB.

8.6 Discussion

The experimental results show that our implementation achieves a good
accuracy on both simulated and real-world datasets. The accuracy was first
evaluated on a simulated dataset and compared with an implementation pro-
vided by Python Robotics [84]. Following, we evaluated the implementation
on data collected from the Formula Student Driverless Simulation which repre-
sents a typical application of this implementation. Finally, a dataset collected
by the University of Toronto Institute for Aerospace Studies [53] was used to
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Robot path
Dead reckoning

Landmarks

Figure 8.14: A depiction of the drift in odometry in the UTIAS dataset due to
the motion noise

evaluate the algorithm on real-world data. By evaluating the performance, we
showed that by leveraging GPUs, we can increase the performance by several
orders of magnitude compared to a CPU implementation. Furthermore, the
required memory scales linearly in both the number of particles and the map
size. For most practical use cases, the used memory will not exceed 100MB.
By evaluating the scaling properties of the implementation, we identified
the data association step as the most time-consuming part. This bottleneck
can be largely circumvented by considering more suitable data structures to
represent the map. However, taking FS Online as a prototypical example
of a real-world application, we showed that the performance far exceeds the
minimum requirements and the memory consumption is miniscule. Thus we
conclude that our proposed implementation is indeed sufficiently accurate

113



8. Experimental results..................................

Robot path
Estimated path
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Figure 8.15: Divergence in the UTIAS dataset may occur due to prolonged
intervals without sensor input combined with odometry noise.

and performant for an autonomous racing formula for the Formula Student
competition.
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Figure 8.16: A graph of the total execution time on the simulated dataset. The
x-axis shows the number of particles and the y-axis is the total time in seconds on
a logarithmic scale. Note that the GPU implementation is orders of magnitude
faster compared to the CPU implementation even for a relatively small number
of particles.
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Figure 8.17: The scaling properties of the algorithm as the number of measure-
ments increases. The x-axis shows the number of simultaneous measurements
while the y-axis shows the total execution time in seconds. This graph implies
that the most time in the algorithm is spent in the data association step which
was confirmed by profiling the code.
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Figure 8.18: A graph of the total execution time on the FS Online dataset as a
function of the number of particles
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Figure 8.19: A graph of the update frequency on the FS Online dataset. For
1024 particles and uknown association, the algorithm operates at approximately
370Hz.
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Figure 8.20: A graph showing the memory scaling of the GPU implementation
for an increasing map size
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Chapter 9

Conclusion

In this thesis, we have discussed the design and implementation of a Si-
multaneous localization and mapping system for an autonomous student
formula participating in the Formula Student competition. Simultaneous
localization and mapping (SLAM) is a problem in which a robot traverses
an unknown environment and uses the information from its exteroceptive
sensor together with odometry to construct a virtual map of the environment
and simultaneously localizes itself within it. In the theoretical section of the
thesis, we provide a thorough overview of the evolution of SLAM in the last
decades. We discussed the theory behind recursive Bayesian estimation and
recursive filtering, which forms the basis of many state estimation techniques
including the probabilistic formulation of SLAM. Bayesian filtering estimates
the posterior density of a system using an estimate from a previous time step,
which is projected forward using the process model and subsequently corrected
using the measurement model. Next, we show a special instance of Bayesian
filtering, which is the Kalman filter. The Kalman filter is an optimal state
estimator for linear/Gaussian systems and plays a crucial role in many SLAM
algorithms. As a last step before SLAM, we described the theory of particle
filters and discussed their use in robotics. Particle filters overcome many
limitations of Kalman filters thanks to their ability to represent arbitrary
distributions by using Monte Carlo techniques. This property makes particle
filters suitable for modeling highly nonlinear systems.

This lays the necessary foundation in order to introduce the three main
SLAM algorithms most commonly found in literature – EKF-SLAM, Fast-
SLAM, and Graph SLAM. EKF-SLAM can be thought of as an extension
of a Kalman filter where the state is extended to include the map estimate.
EKF-SLAM was the first SLAM algorithm successfully deployed in real ap-
plications and remains widely used to this day. The FastSLAM algorithm
supersedes EKF-SLAM in many regards. FastSLAM exploits the conditional
independence between landmarks to factor the SLAM posterior. Thanks
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9. Conclusion......................................
to this factorization, every landmark can be tracked using an independent
low-dimensional EKF, which reduces the time complexity of updating the es-
timate from O(M2) to Θ(1) compared to EKF-SLAM. Moreover, FastSLAM
uses a particle filter to estimate the robot pose, making it more resilient
to nonlinear motion. Finally, we describe Graph SLAM, which is the most
recent state-of-the-art formulation of offline SLAM. Graph SLAM uses the
fact that SLAM can be modeled as a dynamic Bayesian network to build a
constraint graph induced by the robot odometry and sensor measurements.
This graph is then optimized using nonlinear least-squares to find the most
likely path and map configuration. We also discussed the problem of data
association. Data association is a general problem in SLAM in which the
most recent sensor measurements need to be associated with previously seen
landmarks. A robust data association algorithm is crucial for detecting loop
closures in the map. Data association is a difficult problem on its own. In the
thesis, we show a non-exhaustive list of common data association algorithms.

The thesis describes a real-time implementation of FastSLAM 1.0 that is
suitable for use in an autonomous racing formula. We describe how FastSLAM
can be efficiently parallelized by leveraging GPUs. We discuss the differences
in CPU and GPU programming paradigms and give a brief overview of CUDA.
We provide a detailed description of our implementation encompassing the
whole architecture and data structures used. The frontend of the algorithm
which handles data preprocessing and visualization is written in Python, while
the backend is written in CUDA. We use simple linear data structures which
provide a good tradeoff between complexity and speed. Finally, we evaluate
our implementation on an array of simulated and real datasets. We verify
the accuracy compared to a baseline implementation provided by Python
Robotics [84]. Furthermore, by comparing the performance with a CPU
implementation, we find our GPU implementation to be several orders of
magnitude faster and to have significantly better scaling properties. Based
on this, we conclude that our implementation is suitable for real-time SLAM
in an autonomous racing formula.

9.1 Future work

The thesis proposes a implementation of FastSLAM 1.0, however, an improved
version known as FastSLAM 2.0 [63] exists and is also discussed in the thesis.
Unlike FastSLAM 1.0, FastSLAM 2.0 has been shown to converge in the
linear/Gaussian case. Moreover, experimental results show that FastSLAM
2.0 can achieve the same level of accuracy while needing significantly fewer
particles. As such, future work on this implementation should be focused
on extending the original FastSLAM 1.0 formulation to include the proposal
distribution used by FastSLAM 2.0. To make our implementaion even more
efficient, an attention should also be given to data association. Based on
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the information gained by profiling the algorithm, the vast majority of time
is indeed devoted to data association. This is because in order to keep the
implementation relatively simple, the data association algorithm uses linear
data structures resulting in time complexity linear as a function of the map
size. By using proper tree data structures, a logarithmic time complexity can
be achieved.
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Source code

The source code of the proposed implementation is enclosed with the thesis. It
also available in a Github repository 1. The code contains the library together
with several examples based on the experiments shown in the thesis. To run
them, a CUDA-capable GPU is required and CUDA has to be installed on
the host computer. The experiments also require Python3 and several Python
packages. The packages can be installed by running the following command:

$ python3 -m pip install -r requirements .txt

The code structure is shown below. There are three prepared examples,
simulation.py, fsonline.py, and utias.py, which can be run by executing the
corresponding files with Python.

simulation.py

fsonline.py

utias.py

lib/

cuda/

Python GPU instrumentation/visualization

FastSLAM CUDA implementation

1https://github.com/tomasr8/fastslam64/tree/thesis
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Appendix A

Supplemental material

A.1 Recursive Bayesian filter

A.1.1 Derivation of the MMSE estimator

The MMSE estimator minimizes the following loss function:

x̂MMSE
k = arg min

x̂k

E
[
||xk − x̂k||2|z1:k

]
(A.1)

= arg min
x̂k

∫
||xk − x̂k||2 p(xk|z1:k)dxk. (A.2)

Taking the derivative of the loss, we obtain

∂L
∂x̂k

= ∂

∂x̂k

∫
||xk − x̂k||2 p(xk|z1:k)dxk (A.3)

=
∫

∂

∂x̂k
||xk − x̂k||2 p(xk|z1:k)dxk (A.4)

=
∫
−2(xk − x̂k)T p(xk|z1:k)dxk (A.5)

= −2
∫

xT
k p(xk|z1:k)dxk + 2x̂T

k

∫
p(xk|z1:k)dxk (A.6)

= −2E [xk|z1:k]T + 2x̂T
k (A.7)

Setting the last expression to zero, we find that x̂MMSE
k = E [xk|z1:k].

127



A. Supplemental material.................................
A.2 Kalman filter

A.2.1 Intuition behind the Kalman gain

One can gain more intuition about the Kalman gain by considering what hap-
pens when either the prediction or measurement error goes to zero. Consider
first the case when P k|k−1 → 0, i.e., there is a small prediction error. Then,

lim
P k|k−1→0

Kk = 0 ⇒ x̂k|k = x̂k|k−1 + Kkyk (A.8)

= x̂k|k−1. (A.9)

In other words, the filter completely disregards the available measurement
in favor of the prediction. Conversely, when Rk → 0 instead, we have

lim
Rk→0

Kk = H−1
k ⇒ x̂k|k = x̂k|k−1 + Kkyk (A.10)

= x̂k|k−1 + H−1
k

(
zk −Hkx̂k|k−1

)
(A.11)

= H−1
k zk. (A.12)

Here, the filter estimates its position using only the measurement while
ignoring the previous estimate. The Kalman gain is simply a measure of how
much the filter trusts the prediction over the measurement and vice versa.

A.3 Particle filter

A.3.1 Resampling strategies

In this section, we describe some common resampling strategies for particle fil-
ters. Namely, we introduce multinomial, stratified and systematic resampling.
Later we also show algorithms better suited for parallel resampling.
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Multinomial resampling

Multinomial resampling is a resampling algorithm in which the new particles
are sampled directly from the multinomial distribution with parameters N
and w = {w1, . . . , wN}. This by definition satisfies the unbiasedness condi-
tion (5.21). Multinomial sampling can be realised by using the cumulative
distribution function (CDF) induced by the particle weights. The CDF is a
partial sum defined as:

P (xj) =
j∑

i=1
wi. (A.13)

The inverse CDF for a real number u ∈ [0, 1] is then

P (u)−1 =
{

x1, P (x1) ≤ u

xi, P (xi) ≥ u and P (xi−1) < u
. (A.14)

Since the particle weights are discrete values, the CDF is a step function
as shown in Fig. A.1. One can now implement multinomial resampling by
first drawing a random number u ∼ U [0, 1] and then computing the inverse
CDF to get find the corresponding particle. Mathematically, the ancestor ai

is defined as ai = P −1(ui), where ui is the ith random number. This step
is repeated N times until the ancestor vector is filled. The pseudocode of
multinomal resampling is shown in Algorithm 13.

Algorithm 13: Multinomial resampling
input : An array of particle weights {wi, i = 1, 2, ..., N}
output : An ancestor vector {ai, i = 1, 2, ..., N} mapping new

particle indices to old indices
1
2 c1 = w1 // Compute cummulative sum
3 for i← 1 to N do
4 ci = ci−1 + wi

5 end
6
7 for i← 1 to N do
8 Draw u ∼ U(0, 1)
9 ai = P −1(u)

10 end
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x1 x2 x3 x4 x5 x6 x7 x8
0.0

0.2
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1.0 P (x)
wi

Figure A.1: A visualization of the CDF P (x) computed from particle weights
{w1, ..., wN}. The inverse P −1(u) can be found visually by intersecting a line
with the CDF. In this example, P −1(0.6) = x6.

Stratified resampling

Stratified resampling is another common resampling method [45]. Similarly
to multinomial sampling, this method first constructs a CDF P (xi) of the
particle weights. Next, the unit interval [0, 1) is partitioned into N equally
sized subintervals N i such that

N i =
[

i− 1
n

,
i

n

)
. (A.15)

Subsequently, for each subinterval N i, a random number ui is drawn from
the uniform distribution

ui ∼ U
[

i− 1
n

,
i

n

)
. (A.16)

The ancestor vector is then defined as ai = P −1(ui). As shown in [21],
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stratified resampling also satisfies the unbiasedness condition. Furthermore, it
can be shown that the replication counts differ from the expected value Nwi

by at most one in absolute value. Formally, we have |oi −Nwi| ≤ 1. This so-
called set restriction technique leads to a reduction in variance in the offspring
vector. Authors of [21] prove that the variance in the offspring vector is always
lower than that of multinomial resampling, meaning that stratified sampling
is less sensitive to the drawn random numbers. A more detailed comparison
is provided in [67]. Finally, an implementation of stratified resampling is
provided in Algorithm 14.

Algorithm 14: Stratified resampling
input : An array of particle weights {wi, i = 1, 2, ..., N}
output : An ancestor vector {ai, i = 1, 2, ..., N} mapping new

particle indices to old indices
1
2 c1 = w1 // Compute cummulative sum
3 for i← 1 to N do
4 ci = ci−1 + wi

5 end
6
7 Draw u ∼ U [0, 1)
8 i = 0
9 j = 0

10 while i < N do
11 if (i + u)/N < cj then
12 ai = j
13 i = i + 1
14 Draw u ∼ U [0, 1)
15 else
16 j = j + 1
17 end
18 end

Systematic resampling

Systematic resampling is very similar in principle to stratified resampling.
In particular, the unit interval [0, 1] is again partitioned into equally-sized
subintervals

N i =
[

i− 1
n

,
i

n

)
. (A.17)

However, unlike the stratified resampling, only a single random number u
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is drawn from U [0, 1). The ancestor ai of a particle xi is then chosen as

ai = P −1
(

i− 1
n

+ u

n

)
. (A.18)

The difference from stratified sampling is that the offset in every subinterval
is the same and given by u. As shown in [21], systematic resampling is also
unbiased. However, unlike stratified sampling, systematic resampling does
not provably attain a lower variance in the offspring vector compared to
multinomial resampling. Although in practise, the variance of this method is
lower than multionomial resampling and comparable to stratified resampling
[67]. A nice property of systematic resampling is that one only needs to
generate a single random number compared to N random numbers of the
previous two methods. The implementation of systematic resampling is
completely analogous to that of stratified resampling shown in Algorithm 14.
A visual representation of multinomial, stratified and systematic resampling
is shown in Fig. A.2.

w1 w2 w3 w4 w5

Figure A.2: A visual comparison of multinomial (top), stratified (middle) and
systematic resampling (bottom). The length of the color segments corresponds
to the particle weight. The black circles represent the random samples for every
method. The black horizontal lines show the partitioning of the weights into
equal subintervals. Note that for stratified and systematic resasmpling, there is
exactly one sample in each subinterval. The difference being that for systematic
resampling, the offset in each partition is the same, given by just one randomly
drawn number.
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A.3.2 Parallel resampling

Recalling the SIR filter from Algorithm 2, one can notice that the first two
steps, namely, the sampling of particles and weight computation, are easy to
parallelize. This is because in both steps, the particles have no intra-particle
dependencies and thus can be handled separately. With the advent of general
purpose GPUs, taking advantage of parallel computation can offer immense
speedups in the runtime of a particle filter. The potential speedups are even
more enticing when the number of particles is very large. It is therefore
desirable to parallelize the resampling step as well. The sampling algorithms
we have introduced thus far all have collective operations which are difficult
to parallelize efficiently. In this section, we show two resampling algorithms
which, unlike the algorithms shown so far, can be easily parallelized and thus
are well suited for use cases where performance is critical. For a more detailed
review of resampling algorithms, see [67].

Metropolis-Hastings sampling

The Metropolis algorithm, also called Metropolis-Hastings (M-H) [60, 17], is a
method to obtain samples from a distribution which is difficult to sample from
directly. This problem is circumvented by sampling from an entirely different
distribution. Specifically, The M-H sampling is a Markov chain method that
is capable of indirectly sampling from the target distribution f(x) using an
arbitrary proposal distribution g(xk|xk−1). For the M-H sampler to work, it
is required that the target density can be evaluated pointwise up to a constant
factor. The iterative sampling procedure is given below:..1. First, we choose a proposal distribution g(xk|xk−1). This distribution

proposes a new sample given the sample from a previous iteration...2. Second, the algorithm picks an initial sample x1 at random...3. Finally, at time k, the algorithm generates a new sample x′ ∼ g(xk|xk−1)
and computes the acceptance ratio α = f(x′)/f(xk−1). If u ≤ α, where
u ∼ U(0, 1) is drawn from a uniform distribution, we accept the sample
and set xk+1 = x′. If u ≥ α, we reject x′ and set xk+1 = xk. Then,
the sequence {x1, ..., xn} approaches the target distribution f(x) in the
limit.

The pseudocode of the M-H sampler is given in Algorithm 15. This method
works for general multivariate distributions but can be simplified greatly in
the context of particle resampling. Our target distribution f(x) is f(xi) = wi.
The proposal distribution is chosen to be g(xk|xk−1) = U({1, . . . , N}). In
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other words, the new sample is chosen randomly from a uniform distribution
over all samples.

Since we wish to parallelize the sampling algorithm, we do not generate
a sequence {x1, ..., xn}, but use a modification given in Algorithm 16 that
generates only a single sample. If we then run N instances of this algorithm in
parallel, we will obtain N samples. The modified algorithm is parametrized by
B, specifying the number of iterations before it is assumed to have converged
to the target distribution. Since any setting of B must be finite, the Metropolis
sampler is always biased. The choice of B is directly linked to the sampling
bias and is described in [67].

Algorithm 15: General Metropolis-Hastings sampling
input : A density f(x) proportional to the tartget distribution P (x),

the proposal distribution g(xk|xk−1) and the number of
samples to generate given as K

output : An array of samples {xi, i = 1, 2, ..., K} sampled from P (x)
1
2 x1 ← Select arbitrary xi

3 for k ← 2 to K do
4 x′ ∼ g(xk|xk−1)
5 α = f(x′)/f(xk−1)
6 u ∼ U(0, 1)
7 if u ≤ α then
8 xk = x′

9 else
10 xk = xk−1
11 end

Algorithm 16: Metropolis-Hastings resampling
input : An array of particle weights {wi, i = 1, 2, ..., N}

Number of iterations B
output : An ancestor vector {ai, i = 1, 2, ..., N} mapping new

particle indices to old indices
1
2 for i← 1 to N do
3 k = i
4 for n← 1 to B do
5 u ∼ U(0, 1)
6 j ∼ U({1, . . . , N})
7 if u ≤ wj/wk then
8 k = j

9 end
10 ai = j

11 end
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Acceptance-rejection sampling

Another sampling method well-suited for parallelization is Acceptance-rejection
sampling or simply rejection sampling [83, 26, 17]. Similarly to M-H sam-
pling, rejection sampling can be used to sample from an arbitrary distribution
provided we can evaluate its probability density f(x). Moreover, compared to
the M-H sampling, rejection sampling is a conceptually much simpler method.

In particular, assuming we have the target density f(x) which in general
may be difficult to sample from, we search for a density h(x) which can
be efficiently sampled and satisfies f(x) ≤ ch(x) ∀x for some c ∈ R. The
sampling algorithm is then as follows:..1. First, x is sampled from h(x)...2. Second, we sample u ∼ U(0, 1)...3. Finally, if u ≤ f(x)/ch(x), then we accept x and it holds that x comes

from the target distribution f(x). Othwerise if u ≥ f(x)/ch(x)), we
reject the sample and repeat the process until a sample is accepted.

Algorithm 17 illustrates this in detail. It is important to note that if
the bound on f(x) given by ch(x) is not tight, the algorithm may produce
many rejections before accepting a sample. We can easily adapt this general
algorithm for sampling from discrete particle weights as shown in Algorithm
18. Our target f(x) is again the discrete density f(xi) = wi. The bounding
density is chosen to be the uniform discrete distribution h(x) = 1/N . The
constant c should be chosen such that the bound is tight to minimize the
number of rejections. The obvious choice is to set ch(x) = wmax where
wmax = maxi wi. Unfortunately, computing the maximum of a set of weights
is difficult to efficiently parallelize and goes against the idea of parallel
sampling. The choice of a suitable heuristic bound is elaborated in [67, 66].
As a final note, in order to further reduce the variance of the new particle set,
the initial guess may be set to i instead of sampling it from U({1, . . . , N}).

Parallel stratified & systematic resampling

As we discussed in previous sections, both stratified and systematic resampling
attain a lower variance compared to other resampling schemes [67]. This
means that they produce more consistent results and are less sensitive to
the drawn random numbers. Due to this fact, either stratified or systematic
resampling is usually the preferred resampling algorithm. However, these
algorithms are not easily parallelizable due to their data dependencies apparent
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Algorithm 17: General Acceptance-rejection sampling

input : A target density f(x), bounding density h(x) and a constant
c s.t. f(x) ≤ ch(x) ∀x

output : A sample x sampled from f(x)
1
2 x ∼ h(x)
3 u ∼ U(0, 1)
4 while u ≥ f(x)/ch(x) do
5 x ∼ h(x)
6 u ∼ U(0, 1)
7 end

Algorithm 18: rejection resampling
input : An array of particle weights {wi, i = 1, 2, ..., N}
output : An ancestor vector {ai, i = 1, 2, ..., N} mapping new

particle indices to old indices
1
2 for i← 1 to N do
3 j ∼ U{1, N}
4 u ∼ U(0, 1)
5 while u > wj/wmax do
6 j ∼ U({1, . . . , N})
7 u ∼ U(0, 1)
8 end
9 ai ← j

10 end

in Algorithm 14. Luckily, the data dependencies can be removed [28, 69].
This is based on the fact that it is possible to compute the replication count
for every particle directly using the following formula:

Ni = dNci − udNciee. (A.19)

Here, N denotes the total number of particles, ui is the ith random number
sampled from U(0, 1], ci = ∑i

j=1 wi is a partial sum of weights and Ni is
the number of particles selected upon reaching the ith particle. With this
expression, we can calculate the number of offsprings for a particle xi simply
as oi = Ni − Ni−1. The expression for Ni can be adapted to systematic
resampling by replacing udNcie in the expression with just u as systematic
resampling draws only a single random number.

Note that in the above we need to compute the cumulative sum of weights ci.
Cumulative sum, also known as a prefix sum or scan, is a well-known elemen-
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tary algorithm in the field of parallel computing, and there exist work-efficient
algorithms to compute it [34]. Pseudocode of the parallel implementation of
stratified and systematic resampling is provided in Algorithm 19 and 20.

Algorithm 19: Parallel stratified resampling
input : An array of particle weights {w1, ..., wN}
output : An ancestor vector {a1, ..., aN} mapping new particle

indices to old indices
1
2 c← ParallelCummulativeSum(w)
3
4 for i← 1 to N do in parallel
5 Draw ui ∼ U(0, 1)
6 end
7
8 for i← 1 to N do in parallel
9 l = d((ci − wi)×N)− ud(ci−wi)×Nee

10 r = d(ci ×N)− udci×Nee
11 for j ← l to r do
12 aj = i
13 end
14 end

A.3.3 Obtaining the marginal posterior

The recursive formula of the full posterior is given as

p(x1:k|z1:t) = p(zk|xk)p(x1:k|xk−1)p(x1:k−1|z1:k−1)
p(zk|z1:k−1) . (A.20)

We can derive the marginal formula (3.16) by marginalizing out x1:k−1:

137



A. Supplemental material.................................
Algorithm 20: Parallel systematic resampling

input : An array of particle weights {w1, ..., wN}
output : An ancestor vector {a1, ..., aN} mapping new particle

indices to old indices
1
2 c← ParallelCummulativeSum(w)
3
4 Draw u ∼ U(0, 1)
5
6 for i← 1 to N do in parallel
7 l = d((ci − wi)×N)− ue
8 r = d(ci ×N)− ue
9 for j ← l to r do

10 aj = i
11 end
12 end

p(xk|z1:t) =
∫

p(x1:k|z1:t)dx1:k−1 (A.21)

=
∫

p(zk|xk)p(xk|xk−1)p(x1:k−1|z1:k−1)
p(zk|z1:k−1) dx1:k−1 (A.22)

= p(zk|xk)
∫

p(xk|xk−1)p(x1:k−1|z1:k−1)dx1:k−1
p(zk|z1:k−1) (A.23)

= p(zk|xk)
∫

p(xk|xk−1) (
∫

p(x1:k−1|z1:k−1)dx1:k−2) dxk−1
p(zk|z1:k−1)

(A.24)

= p(zk|xk)
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1
p(zk|z1:k−1) (A.25)

= p(zk|xk)p(xk|z1:k−1)
p(zk|z1:k−1) . (A.26)

A.3.4 Optimal sampling distribution

This proof was adapted from [23]. In a particle filter, the new weight is
calculated as

wi
k = wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)
q(xi

k|xi
k−1, zk) . (A.27)
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We want to show that the choice of p(xi
k|xi

k−1, zk) as the proposal density is
optimal in the sense that it minimizes the variance of the weights conditioned
on xi

k−1 and zk. The variance can be expressed as

V arq[wi
k] =

(
wi

k−1

)2
V arq

[
p(zk|xi

k)p(xi
k|xi

k−1)
q(xi

k|xi
k−1, zk)

]
(A.28)

=
(
wi

k−1

)2
[∫ (p(zk|xi

k)p(xi
k|xi

k−1))2

q(xi
k|xi

k−1, zk) dxk −
(∫

p(zk|xi
k)p(xi

k|xi
k−1)dxk

)2
]

(A.29)

=
(
wi

k−1

)2
[∫ (p(zk|xi

k)p(xi
k|xi

k−1))2

q(xi
k|xi

k−1, zk) dxk − p(zk|xi
k−1)2

]
.

(A.30)

Setting q(xi
k|xi

k−1, zk) = p(xi
k|xi

k−1, zk), we obtain

=
(
wi

k−1

)2
[∫ (p(zk|xi

k)p(xi
k|xi

k−1))2

p(xi
k|xi

k−1, zk) dxk − p(zk|xi
k−1)2

]

(A.31)

Bayes=
(
wi

k−1

)2

∫ (p(zk|xi
k)p(xi

k|xi
k−1))2

p(zk|xi
k

,xi
k−1)p(xi

k
|xi

k−1)
p(zk|xi

k−1)

dxk − p(zk|xi
k−1)2


(A.32)

Markov=
(
wi

k−1

)2

∫ (p(zk|xi
k)p(xi

k|xi
k−1))2

p(zk|xi
k

)p(xi
k

|xi
k−1)

p(zk|xi
k−1)

dxk − p(zk|xi
k−1)2


(A.33)

=
(
wi

k−1

)2
[∫

p(zk|xi
k)p(xi

k|xi
k−1)p(zk|xi

k−1)dxk − p(zk|xi
k−1)2

]
(A.34)

=
(
wi

k−1

)2
p(zk|xi

k−1)
[∫

p(zk|xi
k)p(xi

k|xi
k−1)dxk − p(zk|xi

k−1)
]

(A.35)

=
(
wi

k−1

)2
p(zk|xi

k−1)
[
p(zk|xi

k−1)− p(zk|xi
k−1)

]
(A.36)

= 0 (A.37)

As the variance is equal to zero, the choice of p(xi
k|xi

k−1, zk) as the proposal
density is optimal.
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A.4 Simultaneous localization and mapping

A.4.1 Extracting the map

In this section, we provide a detailed description of three heuristic approaches
that are suitable to extract the current map estimate from the FastSLAM
algorithm.

Maximum likelihood

The simplest approach is to only consider the map provided by the particle
with the highest weight. As the weight of a particle provides a certain measure
of fit or likelihood, it is reasonable to assume that such a particle will contain
the most likely map. The issue with this approach is its lack of robustness. In
a given iteration, a substandard particle can be assigned the highest weight
due to a higher measurement error or simply the probabilistic nature of the
problem. Thus, a map which may differ a lot from the ground truth will be
extracted. By considering only the best particle, we discard the information
from all other particles. This becomes less of a problem the longer robot
explores. Due to resampling, all particles will eventually share a common
history which grows over time. Thus, if the robot does not continuously
discover new areas, the particle maps will be largely the same.

K-Means

To incorporate multiple particles in the final map estimate, two questions need
to be answered. First, how many landmarks should be in the final map, and
second, how to associate landmarks from different particles. Here we remark
that this landmark association differs from the problem of data association we
have described previously. Data association deals with pairwise associations.
In contrast, here we need to associate across potentially thousands of different
particles with hundreds of landmarks each, which is not tractable in general.

The problem of associating landmarks from different particles can be solved
heuristically using weighted K-Means. K-Means is an unsupervised learning
technique for estimating clusters in a dataset. It operates in two steps which
are repeated until the algorithm converges. First, the assignment of each data
point is computed based on the distance from the cluster centers. Second, the
new cluster centers are recomputed as the average of all data points assigned
to it in step one. The input to a standard K-Means algorithm is a set of
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data points D = {x1, ..., xN} and the number of clusters k. The output is an
assignment of each data point to a cluster which minimizes the total distance
of points to the cluster centers. Formally, K-Means finds cluster centers µi

by minimizing the following cost function:

C∗ = arg min
C

k∑
i=1

∑
x∈Ci

||x− µi||2, (A.38)

where C = {C1, ..., Ck} satisfying

k⋃
i=1

Ci = D (A.39)

Ci ∩ Cj = ∅ ∀i, j ∈ {1, ..., k}, i 6= j. (A.40)

The cluster centers are computed as a simple average of the points belonging
to the cluster:

µi = 1
|Ci|

∑
x∈Ci

x (A.41)

K-Means can also be weighted, i.e., every point x has an associated weight
wx:

C∗ = arg min
C

k∑
i=1

∑
x∈Ci

wx||x− µi||2. (A.42)

Analogously, the cluster centers can then be computed as a weighted
average:

µi =
∑

x∈Ci
wxx∑

x∈Ci
wx

. (A.43)

To cast the map extraction problem as an instance of K-Means, we first set
D as the set of all landmarks from all particles. The weight of a data point
is the weight of the particle it came from. Since K-Means needs to know the
number of clusters k beforehand, we estimate it as the number of landmarks
in the particle with the highest weight. Moreover, the landmarks belonging
to the most likely particle are set as the initial guess for K-Means. The final
map is then taken as the computed cluster centers.
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Gaussiam Mixture models

While K-Means is a good clustering method, it makes several assumptions
that usually do not hold in the context of SLAM. K-means assumes that
the landmark coordinates are uncorrelated and that the noise is identical for
every landmark cluster. This is problematic, for example, in the case of a
sensor providing range & bearing measurements which typically results in
a high correlation between the landmark coordinates. Moreover, landmarks
that were observed more often will tend to have a lower uncertainty than
landmarks observed only a handful of times. For the purposes of extracting a
map, a clustering algorithm should take these concerns into account.

Gaussiam Mixture models (GMM) can model this problem by not making
any assumptions on the structure of the covariance matrix. For this reason,
GMM can be thought of as a generalization of K-Means. Formally, GMM
assumes that the underlying model that the data comes from is of the form

p(θ) =
k∑

i=1
φiN (µi, Σi). (A.44)

The model is a mixture of k Gaussian distributions with mean µi and
covariance Σi. The cluster weight is given by φi. GMM, similarly to K-Means,
can be solved iteratively using the Expectation-Maximization (E-M) algorithm.
Just like K-Means, the algorithm is a two-step iterative minimization that is
repeated until convergence. In the expectation step, every data point xj is
assigned the likelihood of being generated by every Gaussian:

p(xj |θi) = N (xj ; µi, Σi). (A.45)

In the maximization step, a data point is assigned to a cluster which
maximizes the above likelihood:

Ci = {xj ∈ D | ∀k : p(xj |θi) > p(xj |θk)} (A.46)

With this new assignment, the mean and covariance of the Gaussians are
recomputed as follows:

µi = 1
|Ci|

∑
x∈Ci

x, (A.47)
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Σi = 1
|Ci|

∑
x∈Ci

(x− µi)(x− µi)T . (A.48)

Both steps are repeated until convergence. Convergence is assumed when
the gain in log-likelihood is below a specified threshold. Similarly to K-Means,
GMMs can be adapted to work with a weighted dataset. The equations
(A.47), (A.48) are then adapted as follows:

µi =
∑

x∈Ci
wxx∑

x∈Ci
wx

, (A.49)

Σi =
∑

x∈Ci
wx(x− µi)(x− µi)T∑

x∈Ci
wx

. (A.50)

The FastSLAM map estimation is analogous to K-Means. The number of
clusters is again set as the number of landmarks in the most likely particle.
The initial mean and covariance of each are again either taken from the
most likely particle or they can also be estimated by first running K-Means
and using its cluster centers to initialize the means and the within-cluster
covariance to initialize the covariance matrices. The initial cluster weights φi

are set to 1/k.

A.5 FastSLAM GPU implementation

A.5.1 Resampling

The parallel modification of the permute algorithm consists of two procedures.
The algorithm also uses an auxilliary vector d and an output vector c which
is the resulting conflict-free ancestor vector. In the first procedure, called
prepermute, the vector d is used to claim positions in the output vector c.
If there are multiple copies of the same particle in a, only one of them will
succeed in claiming a space. The prepermute procedure ensures that the
condition (7.1) holds. However, the resulting ancestor vector is not yet valid
as duplicate particles have not yet claimed a position. This is addressed in
the main permute procedure. By constructing a unique sequence given by
the rule x← dx, an unclaimed position is eventually found for every particle.
It can be shown that every particle will find a different unclaimed position
[66]. A visual representation of this algorithm is shown in Fig. A.3. The
pseudocode of the two procedures is provided in Algorithm 21 and 22.
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Note that the atomic minimum operation in the prepermute procedure

merely ensures a deterministic behaviour of the algorithm. If determinism is
not a concern, then atleast in CUDA, the atomic operation can be replaced
with a simple assignment. The CUDA specification guarantees that in the
case of a write conflict, at least one write transaction is guaranteed to be
executed, although it is undefined which one. The prepermute procedure only
needs one particle to succeed in claiming the space, thus this is safe to do.
Removing the atomic operation may increase performance in cases when the
ancestor vector contains many duplicates contesting a write lock for the same
location in d.

Algorithm 21: Prepermute
input : An ancestor vector {a1, . . . , aN}

An auxilliary vector {d1, . . . , dN}
1
2 // Mark free positions
3 for i← 1 to N do in parallel
4 di = N + 1
5 end
6
7 // Claim positions
8 for i← 1 to N do in parallel
9 atomic di ← min(dai , i)

10 end
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Algorithm 22: Parallel permute
input : An ancestor vector {a1, . . . , aN}

An output vector {c1, . . . , cN}
1
2 d← Prepermute(a)
3
4 // Claim leftover positions
5 for i← 1 to N do in parallel
6 x = dai

7 if x 6= i then
8 // Claim unsuccessful in Prepermute
9 x = i

10 while dx < N + 1 do
11 x = dx

12 end
13 dx = i
14 end
15
16 // Write to output vector
17 for i← 1 to N do in parallel
18 ci = adi

19 end
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a 2 2 1 3 1

d 3 1 4 2 1

c 1 2 3 2 1

(0) 6 6 6 6 6

(1) 3 1 4 6 6

(2) 3 1 4 2 6

(3) 3 1 4 2 1



Figure A.3: An example of the parallel permute procedure for a case when the
ancestor vector contains duplicate entries. With duplicate entries, only some
particles are able to claim positions in the prepermute procedure, while the rest
have to claim the remaining positions in the main procedure. To illustrate how
the algorithm operates, the content of the auxilliary d vector is shown on the
right side. First, the vector is preffiled with the value N + 1 = 6 which denotes
an unclaimed position. Subsequently, (1) shows the contents after the particles
claim positions in the prepermute procedure. We can see that a3, a1 and a4

succeed. In step (2), a2 claims a position and finally in (3), a5 claims the final
position. Note that that steps (2) and (3) are executed in parallel.
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